

Updated nominal result and Uncertainty

2023.05.29 Longyu Qin

Outline

- Background estimation by Q-weight method
- Fit result
- I/O check of extracting Nobs
- Systematic uncertainty
- Summary

Q-weight Method

- A space spanned by the n-dimension coordinates ξ is defined and normalized.
 (For some coordinate the normalization can defined as the standard deviation)
 (Better shows a large difference between Signal and background)
- For each event, a certain number of nearest events are selected and to generate a dataset.

$$d_{i,j}^2 = \sum_{k}^{n} \left[\frac{\xi_k^i - \xi_k^j}{\Delta_k} \right]^2$$

 A m-dimension conference coordinates ξ_r is defined, these coordinates should shows a large difference between Signal and background, and should be easily modeled with analytic functions.

coordinate	Normalization
$m^2_{\omega\phi}$	0.3937
$m^2_{\gamma\phi}$	0.272
$m_{\gamma\omega}^2$	0.297
$\cos(\theta_{\omega})$	2
$\cos(heta_{\phi})$	2
$\cos(\theta_{\gamma})$	2
$\lambda_{\omega}/\lambda_{max}$	1

Q-weight Method

• For each event, fit on conference coordinates to the generated dataset is performed, to determine the Q-weight for the event.

• The pre-known background (black dot), and the identified background (blue line) in MC sample.

Fit Result

- $N_{\rm sig} = 152 \pm 33$
- Fit method:

- Significance : 5.04σ
- (PDG upper limit: 2.5×10^{-4} @ 90% C.L.)

• $Br(\eta_c \to \omega \phi) = \frac{N_{obs}}{\epsilon \times N_{total} \times Br(J/\psi \to \gamma \eta_c) \times Br(\omega \to \pi^+ \pi^- \pi^0) \times Br(\phi \to K^+ K^-) \times Br(\pi^0 \to \gamma \gamma)} = \left(4.06 \pm 0.90_{stat} \pm 1.23_{syst}\right) \times 10^{-5}$ Events / (0.0028) $\checkmark \epsilon = 5.02\%$ 80 70 $\checkmark N_{total} = 1.009 \times 10^{10}$ Data Signal Q-weight background 60 Non-peaking background 50 40 30 2.8 3.05 M_{K⁺K⁻π⁺π⁻π⁰} (GeV/c²) 2.85 2.9 2.95 3

✓ Signal MC shape + Argus distribution + Q-weight background (floated)

I/O check result

- Use generated data-like MC sample, randomly sampling to generate 1000 sets of MC samples one times size of data.
- Each sample has input a pre-known signal event number, perform the same fit procedure to extract N_{obs} , $(N_{obs} N_{theo})/\delta_{N_{obs}}$ are calculated and fitted into a Gaussian distribution to draw the Pull distribution:

Systematic Uncertainty

Sources	Uncertainty(%)
Number of J/ψ event	0.5
Intermediate branching ratio	23.6
Tracking efficiency	4.0
Photon detection	3.0
Particle identification	4.0
Kinematic fit	3.0
Mass window for ω	0.4
Mass window for ϕ	0.01
Decay angle cut of π^0	7.0
Veto $oldsymbol{\eta}'$	0.1
Signal MC shape of η_c	1.0
Fit range	13.5
Background estimation and fitting method	8.5
Total	30.2

Longyu Qin (秦龙宇)

Uncertainty from External Parameters

- Number of J/ψ event:
 - $\checkmark N_{J/\psi} = (10087 \pm 44) \times 10^6$
 - ✓ Uncertainty: 0.5%
- Intermediate branching ratio
 - $\checkmark J/\psi \rightarrow \gamma \eta_c: 1.7 \pm 0.4\%$
 - $\checkmark \omega \rightarrow \pi^0 \pi^+ \pi^-: 89.2 \pm 0.7\%$
 - $\checkmark \phi \rightarrow K^+K^-: 49.2 \pm 0.5\%$
 - $\checkmark \pi^0 \rightarrow \gamma ~\gamma: 98.823 \pm 0.034\%$

✓ Uncertainty: 23.6% (1.3% for excluding $J/\psi \rightarrow \gamma \eta_c$ Br)

- Tracking efficiency
 - ✓ 1.0% per pion track and per kaon track, 4.0% in total
- Photon detection
 - ✓ 1.0% per photon, 3.0% in total
- Particle identification
 - ✓ 1.0% per pion and per kaon, 4.0% in total

- Kinematic Fit:
 - ✓ Use helix parameter correction to study the difference on χ^2_{5C} between MC and data. The corresponding Br difference is considered as uncertainty.
 - ✓ Uncertainty: 3.0%

- Mass window
 - ✓ Use Gaussian-convoluted signal MC shape fit to data, to study difference of mass resolution between MC and data.

✓ Uncertainty: 0.4% for omega and 0.01% for phi

• Decay angle cut of π^0

✓ Alternative cut range ($|\cos(\theta_{decay})| \le 0.925$ and $|\cos(\theta_{decay})| \le 0.975$) is applied. The corresponding Br difference is considered as uncertainty.

✓ Uncertainty: 7.0%

• Veto η'

✓ Alternative generator model is applied, The corresponding efficiency difference is considered as uncertainty.

✓ Uncertainty: 0.1%

Uncertainty from Extracting Nobs

• Signal MC shape of η_c

✓ $J/\psi \rightarrow \gamma \eta_c$ is generated with modified JPE model referred from CLEO result. Change the model parameter ±1 σ given in reference, to vary the MC shape of η_c . The corresponding Br difference is considered as uncertainty.

✓ Uncertainty: 1.0%

• Fit range

✓ Alternative fit range ($M_{\omega\phi} \ge 2.750$, $M_{\omega\phi} \ge 2.775$ and $M_{\omega\phi} \ge 2.825$) is applied. The corresponding Br difference is considered as uncertainty.

✓ Uncertainty: 13.5%

Uncertainty from Extracting Nobs

- For background estimation and fitting method, use Br difference between Q-weight method and 2-D sideband method as the Uncertainty.
 - ✓ Uncertainty:8.5%

Summary and next to do

- The nominal result and corresponding uncertainty is updated
 - ✓ Nominal result:
 - $Br(\eta_c \to \omega \phi) = (4.06 \pm 0.90_{stat} \pm 1.23_{syst}) \times 10^{-5}$
 - Significance : 5.04σ (statistical only)
- Next to do:
 - ✓ update memo

Thank you!

BACKUP

Q-weight problems

• Better estimation have worse IO result

	COVARIANCE MATRIX CALCULATED SUCCESSFULLY									
	FCN=1091.89 FROM HESSE STATUS=0K 10 CALLS 65 TOTAL									
	EDM=3.29088e-09 STRATEGY= 1 ERROR MATRIX ACCURATE									
	EXT PARAMETER INTERNAL INTERNAL									
	NO. NAME VALUE ERROR STEP SIZE VALUE									
	1 mean0 -5.48946e-01 2.58048e-02 2.81640e-05 -5.81102e-01									
	2 sigma0 7.85794e-01 1.82492e-02 1.04826e-05 -6.52410e-01									
ERR DEF= 0.5										
	EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 2 ERR DEF=0.5									
	6.661e-04 9.518e-09									
	9.518e-09 3.330e-04									
	PARAMETER CORRELATION COEFFICIENTS									
	NO. GLOBAL 1 2									
	1 0.00002 1.000 0.000									
	2 0.00002 0.000 1.000									

Q-weight problems

• Bad fit for about ¼ for omega fit and 1/3 for phi fit

Uncertainty

- Kinematic Fit:
 - ✓ Use helix parameter correction to study the difference on χ^2_{5C} between MC and data.

- ✓ Signal efficiency for χ^2_{5C} cut 67.4%
- ✓ Signal efficiency after correction for χ^2_{5C} cut 62.0%
- ✓ Difference 8.1%
- ✓ Signal efficiency total 5.02%
- ✓ Signal efficiency after correction total 4.86%
- ✓ Difference 3.2%

Uncertainty

- Mass window
 - ✓ Use Gaussian-convoluted signal MC shape fit to data, to study difference of mass resolution between MC and data.

omega:mean-2.31mev sigma8.21mev phi:mean -0.06mev sigma 0.31mev

Uncertainty

States	N_obs	<i>€</i> (%)	Br(10-5)	significance	notes
Nominal result	151+-33	5.02	4.06+-0.89	5.03	
Kinematic fit	151+-33	4.86	4.18+-0.91	5.05	Change signal shape
Etac shape(larger one)	150+-27	5.01	4.03+-0.72	5.02	Change signal shape
Fit range 2.75	172+-28	5.02	4.61+-0.74	5.9	Change dataset
Fit range 2.775	172+-30	5.01	4.61+-0.80	5.7	Change dataset
Fit range 2.825	168+-32	5.01	4.50+-0.86	5.4	Change dataset
π^0 decay angle 0.925	160+-33	4.93	4.34+-0.90	5.08	Change dataset
π^0 decay angle 0.975	161+-32	5.04	4.29+-0.85	4.98	Change dataset
sideband	139+-30	5.02	3.72+-0.8	4.3	Different method

Detail

- In Fit range, the background estimation is almost the same:
- pics shows the estimated background by Q-weight

Fit range in 2.75,2.775 and 2.825