Strong phase in $D \to K\pi$ decays and CP asymmetry in four-body D decays

高道能

中国科大

2013年高亮度τ-粲物理研讨会,中国科大

June 16-18, 2013

Outline

- Strong phase in $D \to K\pi$ decays
- CP violation in four-body D decays
- Summary

Strong phase

• Effective Hamiltonian for $D \to K\pi$ decays $(c \to su\bar{d}, \ c \to du\bar{s})$

$$\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} \left\{ V_{ud} V_{cs}^* [C_1(\bar{s}_i c_i)_{V-A}(\bar{u}_j d_j)_{V-A} + C_2(\bar{s}_i c_j)_{V-A}(\bar{u}_j d_i)_{V-A} \right] + V_{us} V_{cd}^* [C_1(\bar{d}_i c_i)_{V-A}(\bar{u}_j s_j)_{V-A} + C_2(\bar{d}_i c_j)_{V-A}(\bar{u}_j s_i)_{V-A}] \right\} + \text{H.c.},$$

where the first line governs $Cabibbo\ favored\ (CF)$ decays:

$$D^0 \to K^- \pi^+, \quad D^0 \to \bar{K}^0 \pi^0, \quad D^+ \to \bar{K}^0 \pi^+,$$

and the second line $doubly\ Cabibbo\ suppressed\ (DCS)$ decays:

$$D^0 \to K^+\pi^-, \quad D^0 \to K^0\pi^0, \quad D^+ \to K^0\pi^+, \quad D^+ \to K^+\pi^0.$$

NO penguin contributions in $D \to K\pi$ decays!

Some experimental observables

• Asymmetries for $D \to K_S \pi$ vs. $D \to K_L \pi$

An interesting asymmetry due to interference between CF $D \to \overline{K^0}\pi$ and DCS $D \to K^0\pi$ decays, defined as

$$R(D) \equiv rac{\mathcal{B}(D o K_S \pi) - \mathcal{B}(D o K_L \pi)}{\mathcal{B}(D o K_S \pi) + \mathcal{B}(D o K_L \pi)},$$

(Bigi and Yamamoto, 1995)

have been observed by CLEO Collaboration

$$R(D^0) = 0.108 \pm 0.025 \pm 0.024,$$

$$R(D^+) = 0.022 \pm 0.016 \pm 0.018.$$

(Q. He et al., CLEO Collaboration, 2008)

Theoretically, these asymmetries

$$R(D) = \frac{2r_D \cos \delta_D}{1 + r_D^2},$$

where we parameterize

$$\frac{A(D \to K^0 \pi)}{A(D \to \overline{K^0} \pi)} = -r_D e^{-i\delta_D},$$

Here r_D is real and δ_D is the strong phase (neglecting CP violation effects)

• $\delta_{K\pi}$

The relative strong phase $\delta_{K\pi}$ between $D^0 \to K^-\pi^+$ and $D^0 \to K^+\pi^-$

$$\frac{A(D^0 \to K^+ \pi^-)}{A(D^0 \to K^- \pi^+)} = -R_D e^{i\delta_{K\pi}}$$

has been also reported by CLEO Collaboration

$$\cos \delta_{K\pi} = 1.03^{+0.31}_{-0.17} \pm 0.06$$

(Asner et al., CLEO Collaboration, 2008)

with very large uncertainty.

The phase is important in the search for $D^0 - \bar{D}^0$ mixing, since it appears in the time dependence assuming CP invariance

$$R(t) = [R_D^2 + R_D y' \Gamma t + (y'^2 + x'^2)(\Gamma t)^2 / 4]e^{-\Gamma t}$$

with $x' = x \cos \delta_{K\pi} + y \sin \delta_{K\pi}$, $y' = y \cos \delta_{K\pi} - x \sin \delta_{K\pi}$ and $x = \Delta m/\Gamma$, $y = \Delta \Gamma/2\Gamma$ are two dimensionless parameters describing $D^0 - \bar{D}^0$ mixing.

 \Longrightarrow

A difficult task:

To calculate the amplitude $A(D \to K\pi)$ including the strong phases

 \Longrightarrow

- (i) Naive factorization cannot work (also due to large color-suppressed amplitudes).
- (ii) QCD factorization and pQCD approaches, which work in B decays, cannot be expected to work here since m_c is not heavy enough.

Phenomenological Analysis for non-leptonic D decays

Amplitude decomposition and theoretical assumptions

In terms of the quark-diagram topologies: T (color-allowed), C (color-suppressed), E (W-exchange), and A (W-annihilation)

(Chau and Cheng, PRL 56(1986)1655; PRD 36 (1987) 137)

$$\begin{split} A(D^0 \to K^- \pi^+) &= i \frac{G_F}{\sqrt{2}} V_{ud} V_{cs}^* (T + \mathcal{E}), \quad \sqrt{2} A(D^0 \to \bar{K}^0 \pi^0) = i \frac{G_F}{\sqrt{2}} V_{ud} V_{cs}^* (\mathcal{C} - \mathcal{E}), \\ A(D^+ \to \bar{K}^0 \pi^+) &= i \frac{G_F}{\sqrt{2}} V_{ud} V_{cs}^* (T + \mathcal{C}), \\ A(D^0 \to K^+ \pi^-) &= i \frac{G_F}{\sqrt{2}} V_{us} V_{cd}^* (T' + \mathcal{E}'), \quad \sqrt{2} A(D^0 \to K^0 \pi^0) = i \frac{G_F}{\sqrt{2}} V_{us} V_{cd}^* (\mathcal{C}' - \mathcal{E}'), \\ A(D^+ \to K^0 \pi^+) &= i \frac{G_F}{\sqrt{2}} V_{us} V_{cd}^* (\mathcal{C}' + \mathcal{A}'), \quad \sqrt{2} A(D^+ \to K^+ \pi^0) = i \frac{G_F}{\sqrt{2}} V_{us} V_{cd}^* (T' - \mathcal{A}'). \end{split}$$

In general T, C, \mathcal{E} , and \mathcal{A} could have non-trivial strong phases.

→ only using the available experimental data, it is impossible to determine these amplitudes without any theoretical assumptions. Factorization hypothesis ⇒

$$\frac{T'}{T} = \frac{f_K}{f_\pi} \frac{(m_D^2 - m_\pi^2) F_0^{D \to \pi}(m_K^2)}{(m_D^2 - m_K^2) F_0^{D \to K}(m_\pi^2)}, \quad \mathcal{C} = \mathcal{C}'$$

$$\mathcal{E} = \mathcal{E}', \quad \mathcal{A}' = \frac{C_2}{C_1} \mathcal{E}'$$

(Gao, 2007)

Now we reduce independent complex phenomenological parameters appearing in decay amplitudes as T, \mathcal{C} , and \mathcal{E} . Five branching ratios of $D \to K\pi$ decays are measured up to now, this enables us to determine the $D \to K\pi$ amplitudes from the present data.

Although these are not model independent relations, one will find that phenomenologically they work very well in $D \to K\pi$ decays.

Phenomenological results

(Gao, 2007)

• The asymmetry $R(D^0)$

$$\mathcal{C}=\mathcal{C}',\mathcal{E}=\mathcal{E}'\Longrightarrow$$

$$A(D^{0} \to K^{0}\pi^{0}) = \frac{V_{us}V_{cd}^{*}}{V_{ud}V_{cs}^{*}}A(D^{0} \to \bar{K}^{0}\pi^{0}) = -\tan^{2}\theta_{C}A(D^{0} \to \bar{K}^{0}\pi^{0}).$$

This means that $\delta_{D^0} = 0^{\circ}$. Consequently,

$$R(D^0) = \frac{2\tan^2\theta_C}{1+\tan^4\theta_C} \simeq 2\tan^2\theta_C.$$

consistent with the result using U-spin relation

(Bigi, Yamamoto, 1995; Rosner, 2006).

$$\tan \theta_C \simeq 0.23 \Longrightarrow$$

$$R(D^0) \simeq 0.106$$

in agreement with the measurement $R(D^0) = 0.108 \pm 0.025 \pm 0.024$

• The asymmetry $R(D^+)$

$$\frac{A(D^+ \to K^0 \pi^+)}{A(D^+ \to \bar{K}^0 \pi^+)} = -\tan^2 \theta_C \frac{C' + A'}{C + \mathcal{T}} = -\tan^2 \theta_C \frac{C + C_2/C_1 \mathcal{E}}{C + \mathcal{T}},$$

Numerically

$$\frac{A(D^+ \to K^0 \pi^+)}{A(D^+ \to \bar{K}^0 \pi^+)} = \begin{cases}
-\tan^2 \theta_C \ 1.538 e^{\pm i 106^{\circ}}, & C_2/C_1 = -0.3, \\
-\tan^2 \theta_C \ 1.532 e^{\pm i 105^{\circ}}, & C_2/C_1 = -0.4, \\
-\tan^2 \theta_C \ 1.521 e^{\pm i 103^{\circ}}, & C_2/C_1 = -0.5,
\end{cases}$$

here no similar U-spin relation for the charged case

here it is found that δ_{D^+} is about 100°. This leads to

$$R(D^{+}) = \begin{cases} 0.044, & C_2/C_1 = -0.3, \\ 0.040, & C_2/C_1 = -0.4, \\ 0.035, & C_2/C_1 = -0.5. \end{cases}$$

 $R(D^+) = -0.005 \pm 0.013$ was obtained theoretically also by (Bhattacharya and Rosner, 2010)

The present observed value by CLEO Collaboration

$$R(D^+) = 0.022 \pm 0.016 \pm 0.018.$$

• Estimation of $\delta_{K\pi}$

C_2/C_1	-0.2	-0.3	-0.4	-0.5	-0.6
$\cos \delta_{K\pi}$	0.983 ± 0.015	0.980 ± 0.017	0.976 ± 0.021	0.970 ± 0.026	$0.960 {\pm} 0.034$
$\delta_{K\pi}$	$10.5^{\circ} \pm 4.6^{\circ}$	$11.4^{\circ} \pm 4.9^{\circ}$	$12.6^{\circ} \pm 5.5^{\circ}$	$14.1^{\circ} \pm 6.1^{\circ}$	$16.2^{\circ} \pm 6.9^{\circ}$

A not large but nonzero $\delta_{K\pi}$, whose magnitude is 10° or above, i.e. $\sin \delta \sim \pm 0.2$, might be expected from the present analysis.

• Some other theoretical estimations

By assuming the existence of nearby resonances for the D meosn, $\sin \delta_{K\pi} = \pm 0.31$, i.e. $\delta_{K\pi} = \pm 18^{\circ}$ was obtained. (A.F. Falk,Y. Nir, A. Petrov, 1999)

The other existing hadronic models which incorporate SU(3) symmetry breaking effects seems to prefer a small value of this phase with most models giving $\sin \delta \leq 0.1$.

(T.E. Browder, S. Pakvasa, 1996)

Four-body D decays

$$D^0 \to K^- \pi^+ \ell^+ \ell^-, D^0 \to \pi^+ \pi^- \ell^+ \ell^-,$$

$$\ell = e, \mu$$

$$D^0 \to K^+K^-\ell^+\ell^-, D^0 \to K^+\pi^-\ell^+\ell^-.$$

Cappiello, Cata, D'Ambrosio, 2012

$$D \to \bar{K}K\pi^+\pi^-$$

H.B. Li, 0902.3032[hep-ex] X.W. Kang and H.B. Li, 2010

Proposed by Bigi

Motivated by the CP study in $K_L \to \pi^+\pi^-e^+e^-$

$$K_L \to \pi^+ \pi^- e^+ e^-$$

Sehgal et al published in 1992 — 2000

Amplitude has two major contributions:

Inner Bremssstrahlung (IB), electric

Direct Emission (DE), magnetic + small electric

IB CPV

M1 CP conserving
DE
E1 CPV very small

Thus the amplitude of $K_L(p) \to \pi^+(p_+)\pi^-(p_-)e^+(k_+)e^-(k_-)$ can be written as

$$\mathcal{M}(K_L \to \pi^+ \pi^- e^+ e^-) = \frac{e}{q^2} \bar{u}(k_-) \gamma_\mu v(k_+) V^\mu$$

$$V_\mu = i M \varepsilon^{\mu\nu\alpha\beta} p_{+\nu} p_{-\alpha} q_\beta + E_+ p_+^\mu + E_- p_-^\mu$$

$$q^2 = (k_+ + k_-)^2 = M_{ee}$$

$$s = (p_+ + p_-)^2 = M_{\pi\pi}$$

The Lorentz invariant form factors M and E_{\pm} stand for the magnetic and electric transitions, respectively, depending on scalar products of q, p_{+} and p_{-} , which can be calculated in chiral perturbation theory.

Kinematics

Five independent kinematic varibles:

The range of the variables is:

$$4m_{\pi}^{2} \leq s \leq (M_{K} - 2m_{e})^{2}$$

$$4m_{e}^{2} \leq q^{2} \leq (M_{K} - \sqrt{s})^{2}$$

$$0 \leq \theta_{\pi}, \ \theta_{e} \leq \pi$$

$$0 \leq \phi \leq 2\pi$$

Angle ϕ will play important role in CP violation

Now the differential decay rate takes the form

$$d\Gamma = I(s, q^2, \cos \theta_e, \cos \theta_\pi, \phi) ds dq^2 d\cos \theta_e d\cos \theta_\pi d\phi$$

where I is from squaring the amplitude.

The differential decay rate with respect to ϕ , after integration over other four variables, will be in a general form as

$$\frac{d\Gamma}{d\phi} = \Gamma_1 \cos^2 \phi + \Gamma_2 \sin^2 \phi + \Gamma_3 \sin \phi \cos \phi$$

$$\parallel \sec$$

We will see

The angular distribution will give a CP-violating asymmetry, which is due to interference of CP-even and CP-odd parts.

 ϕ is defined, in the K_L rest frame, as

$$\sin\phi = \vec{n}_{\pi} \times \vec{n}_{l} \cdot \vec{z}, \quad \cos\phi = \vec{n}_{\pi} \cdot \vec{n}_{l}$$

with

$$\vec{n}_{\pi} = (\vec{p}_{+} \times \vec{p}_{-})/|\vec{p}_{+} \times \vec{p}_{-}|,$$
 $\vec{n}_{l} = (\vec{k}_{+} \times \vec{k}_{-})/|\vec{k}_{+} \times \vec{k}_{-}|,$
 $\vec{z} = (\vec{p}_{+} + \vec{p}_{-})/|\vec{p}_{+} + \vec{p}_{-}|.$

under C

under *CP*

under P

$$|\vec{p}_{\pm} \to \vec{p}_{\mp}| \qquad \sin \phi \to -\sin \phi$$
 $|\vec{k}_{\pm} \to \vec{k}_{\mp}| \longrightarrow \cos \phi$

$$\sin \phi \rightarrow -\sin \phi$$

$$\cos \phi \to \cos \phi$$

 $|\vec{p}_+ \rightarrow -\vec{p}_+|$

$$\vec{k}_{\pm} \rightarrow -\vec{k}_{\pm}$$

 $\sin \phi \cos \phi$ is a CP-odd quantity!!

CP-violating asymmetry is defined as

$$\mathcal{A}_{\text{CP}} = \frac{N_{\sin\phi\cos\phi>0.0} - N_{\sin\phi\cos\phi<0.0}}{N_{\sin\phi\cos\phi>0.0} + N_{\sin\phi\cos\phi<0.0}}$$

$$= \frac{\int_{0}^{2\pi} \frac{d\Gamma}{d\phi} d\phi \operatorname{sign}(\sin\phi\cos\phi)}{\int_{0}^{2\pi} \frac{d\Gamma}{d\phi} d\phi} \propto \Gamma_{3}$$

$$\propto \operatorname{Im}[(E_{+} - E_{-})M^{*}]$$

$$\int_0^{2\pi} \frac{d\Gamma}{d\phi} \, d\phi \, \operatorname{sign}(\sin\phi\cos\phi) = \left(\int_0^{\pi/2} - \int_{\pi/2}^{\pi} + \int_{\pi}^{3\pi/2} - \int_{3\pi/2}^{2\pi} \right) \frac{d\Gamma}{d\phi} \, d\phi$$

A large CP violating asymmetry

The predicted value is

$$|\mathcal{A}_{\rm CP}| \simeq 14\%$$

Heiliger and Sehgal, PRD (1993)

To be compared with the observed value by KTeV and NA48

$$|\mathcal{A}_{CP}| = (13.7 \pm 1.5)\%$$

(PDG 2006)

$$B(K_L \to \pi^+ \pi^- e^+ e^-)$$

$$= (1.3 \times 10^{-7})_{\rm IB} + (1.8 \times 10^{-7})_{\rm M1} + (0.04 \times 10^{-7})_{\rm CR}$$

$$\simeq 3.1 \times 10^{-7} \qquad \text{Theory by Heiliger and Sehgal (1993)}$$

$$= (3.11 \pm 0.19) \times 10^{-7} \qquad \text{Data From PDG06 (NA48 and KTeV)}$$

The comparable IB and M1 contributions lead to a large

CP-violating asymmetry

IB suppressed by CP symmetry M1 CPC but $O(p^4)$ in CHPT

Similar analysis of CP violating asymmetry in $\eta \to \pi^+\pi^-e^+e^-$ has been done in (Gao, 2002)

$$\mathcal{A}_{\rm CP} = (-0.6 \pm 2.5_{\rm stat} \pm 1.8_{\rm syst}) \cdot 10^{-2}$$

by KLOE Collaboration 2009

Therefore, the search for CP violation (confirm or rule out) in this decay clearly requires much more data

Similar study in
$$\eta' \to \pi^+ \pi^- e^+ e^-$$
 through $J/\psi \to \gamma \eta'$

Summary

- Strong phase in $D \to K\pi$ decays plays important roles in some interesting observables, which are related to asymmetries and the D-mixing parameters. precise measurements of them will be welcome both theoretically and experimentally.
- Four-body D decays or $\eta' \to \pi^+\pi^-\ell^+\ell^-$ may induce the CP violating effects. Large CPV in D sector may signal new physics.
- These could be interesting topics in STCF.

Thank you!

Angular distribution of $\tau^- o K_S \pi^- \nu_{\tau}$ decay

Dao-Neng Gao and Xian-Fu Wang, Phys.Rev.D 87,073016(2013)

Study of $\tau^- o K_S \pi^- \nu_{\tau}$ decay at Belle

Figure 1: Comparison of the $K_{S\pi}$ mass distributions, points are experimental data, histogram is the fitted result with the model incorporating the $K^*(892)$ alone.

The vector form factor F_V is parameterized by the $K^*(892)$, $K^*(1410)$ and $K^*(1680)$ meson amplitudes:

$$F_{V} = \frac{1}{1 + \beta + \chi} \left[BW_{K^{*}(892)}(s) + \beta BW_{K^{*}(1410)}(s) + \chi BW_{K^{*}(1680)}(s) \right], \tag{20}$$

where β and χ are complex coefficients for the fractions of the $K^*(1410)$ and $K^*(1680)$ resonances, respectively. $BW_R(s)$ is the relativistic Breit-Wigner function:

$$BW_R(s) = \frac{M_R^2}{s - M_R^2 + i\sqrt{s}\Gamma_R(s)},$$
 (21)

where $\Gamma_R(s)$ is the s-dependent total width of the resonance:

$$\Gamma_R(s) = \Gamma_{0R} \frac{M_R^2}{s} \left(\frac{P(s)}{P(M_R^2)} \right)^{2\ell+1}, \tag{22}$$

where $\ell = 1(0)$ if the $K\pi$ system originates in the P(S)-wave state and Γ_{0R} is the resonance width at its peak.

The scalar form factor F_S includes the $K_0^*(800)$ and $K_0^*(1430)$ contributions, their fractions are described respectively by the complex constants \varkappa and γ :

$$F_{S} = \varkappa \frac{s}{M_{K_{0}^{*}(800)}^{2}} BW_{K_{0}^{*}(800)}(s) + \gamma \frac{s}{M_{K_{0}^{*}(1430)}^{2}} BW_{K_{0}^{*}(1430)}(s).$$
(23)

	K*(892)	$K_0^*(800) + K^*(892)$	$K_0^*(800) + K^*(892) +$
		+K*(1410)	+K*(1680)
$M_{K^*(892)^-}$	895.53 ± 0.19	895.47 ± 0.20	894.88 ± 0.20
Γ _{K*(892)} –	49.29 ± 0.46	46.19 ± 0.57	45.52 ± 0.51
$ \beta $		0.075 ± 0.006	
$arg(\beta)$		1.44 ± 0.15	
lad			0.017
$ \chi $			0.117 ± 0.033
$arg(\chi)$			3.17 ± 0.47
×		1.57 ± 0.23	1.53 ± 0.24
$\chi^2/\text{n.d.f.}$	448.4/87	90.2/84	106.8/84
$P(\chi^2), \%$	0	30	5

	$K_0^*(800) + K^*(892) + K_0^*(1430)$		
	solution 1	solution 2	
$M_{K^*(892)^-}, \text{ MeV}/c^2$	895.42 ± 0.19	895.50 ± 0.22	
$\Gamma_{K^*(892)^-}$, MeV	46.14 ± 0.55	46.20 ± 0.69	
$ \gamma $ $$	0.954 ± 0.081	1.92 ± 0.20	
$arg(\gamma)$	0.62 ± 0.34	4.03 ± 0.09	
\varkappa	1.27 ± 0.22	2.28 ± 0.47	
$\chi^2/\text{n.d.f.}$	86.5/84	95.1/84	
$P(\chi^2), \%$	41	19	

Differential decay rate

The differential decay rate is obtained from

$$d\Gamma = \frac{1}{2m_{\tau}} \left(\prod_{f} \frac{d^{3}p_{f}}{(2\pi)^{3}} \frac{1}{2E_{f}} \right) |\mathcal{M}|^{2} (2\pi)^{4} \delta^{(4)}(p_{\tau} - \sum_{f} p_{f})$$

Integrating out some angles and momentum, we get

$$\frac{d^{2}\Gamma}{dsd\cos\theta} = \frac{G_{F}^{2}\sin^{2}\theta_{C}}{2^{6}\pi^{3}\sqrt{s}} \frac{(m_{\tau}^{2} - s)^{2}}{m_{\tau}^{3}} P(s)$$

$$\left((\frac{m_{\tau}^{2}}{s}\cos^{2}\theta + \sin^{2}\theta) P^{2}(s) |F_{V}(s)|^{2} + \frac{m_{\tau}^{2}}{4} |F_{S}(s)|^{2} - \frac{m_{\tau}^{2}}{\sqrt{s}} P^{2}(s) Re(F_{V}F_{S}^{*}) \cos\theta \right)$$

The differential forward-backward asymmetry

$$A_{FB}(s) = \frac{\int_0^1 \left(\frac{d^2\Gamma}{ds \ d\cos\theta}\right) d\cos\theta - \int_{-1}^0 \left(\frac{d^2\Gamma}{ds \ d\cos\theta}\right) d\cos\theta}{\int_0^1 \left(\frac{d^2\Gamma}{ds \ d\cos\theta}\right) d\cos\theta + \int_{-1}^0 \left(\frac{d^2\Gamma}{ds \ d\cos\theta}\right) d\cos\theta}$$

Figure 3: The differential forward-backward asymmetry A_{FB} is plotted as the function of \sqrt{s} . The solid line is for Model I, the dashed-dotted line is for Model II-1, and the dashed line is for Model II-2.