Hadron spectroscopy @ future tau-charm facility

LIU Beijiang

In post-BES3 era Hadron spectroscopy @ future tau-charm facility

In post-BES3 era Hadron spectroscopy @ future tau-charm facility *laccompanied* with

accompanied with Belle2, GlueX, CLAS12, PANDA, COMPASS(2), ...

- Strange (charmed) baryons spectroscopy
- Hadron spectroscopy in charmonium decays (QCD exotics)
 - Glueballs
 - Hybrids
 - Multiquarks
 - N* programs
- Hadron spectroscopy in/out from charm Dalitz plot analysis
- Rare phenomena of light hadrons
- Two-photon process, ISR production are not discussed.

Hadron spectroscopy is a key tool to investigate QCD

- testing QCD in the confinement regime
- providing insights into the fundamental degrees of freedom

One open question: How does glue manifest itself in the soft QCD regime?" Models of hadron structure:

- Constituent Quark Model
- Lattice QCD
- Bag Model
- Flux tube model
- Sum rules approach

predict new forms of hadronic matter with the glue degree of freedom manifest explicitly:

- Hybrids:
- Glueballs:

One of the most important tasks of BES3

BES provides some ideal hunting grounds

"gluon-rich" x Power of high statistics

What we could have done with 1B-10B J/psi (psi', eta_c, chi_c)

Light glueballs (0+,0-,2+): ordinary J^PC

- Production mechanism: Gluon-rich process
- Flavor-blind decay patterns
- Overpopulation
- Solve mixing scheme

DOZI enhanced?

0-+

What we could have done with 1B-10B J/psi (psi', eta_c, chi_c)

Light hybrids: search for nonets

	Approximate	$J^{\overline{PC}}$	Total Wid	th (MeV)	Relevant Decays	Final States
	Mass (MeV)		\mathbf{PSS}	IKP		
π_1	1900	1^{-+}	80 - 170	120	$b_1\pi^{\dagger}, \rho\pi^{\dagger}, f_1\pi^{\dagger}, a_1\eta, \eta'\pi^{\dagger}$	$\omega\pi\pi^{\dagger}, 3\pi^{\dagger}, 5\pi, \eta 3\pi^{\dagger}, \eta'\pi^{\dagger}$
η_1	2100	1^{-+}	60 - 160	110	$a_1\pi, f_1\eta^{\dagger}, \pi(1300)\pi$	$4\pi, \eta 4\pi, \eta \eta \pi \pi^{\dagger}$
η'_1	2300	1^{-+}	100-220	170	$K_1(1400)K^{\dagger}, K_1(1270)K^{\dagger}, K^*K^{\dagger}$	$KK\pi\pi^{\dagger}, KK\pi^{\dagger}, KK\omega^{\dagger}$
b_0	2400	0^{+-}	250 - 430	670	$\pi(1300)\pi, h_1\pi$	4π
h_0	2400	0^{+-}	60 - 260	90	$b_1 \pi^{\dagger}, h_1 \eta, K(1460) K$	$\omega\pi\pi^{\dagger}, \eta 3\pi, KK\pi\pi$
h'_0	2500	0^{+-}	260-490	430	$K(1460)K, K_1(1270)K^{\dagger}, h_1\eta$	$KK\pi\pi^{\dagger}, \eta 3\pi$
b_2	2500	2^{+-}	10	250	$a_2 \pi^{\dagger}, a_1 \pi, h_1 \pi$	$4\pi, \eta\pi\pi^{\dagger}$
h_2	2500	2^{+-}	10	170	$b_1 \pi^{\dagger}, \ \rho \pi^{\dagger}$	$\omega\pi\pi^{\dagger}, 3\pi^{\dagger}$
h'_2	2600	2^{+-}	10 - 20	80	$K_1(1400)K^{\dagger}, K_1(1270)K^{\dagger}, K_2^*K^{\dagger}$	$KK\pi\pi^{\dagger}, KK\pi^{\dagger}$
Phys Rev D59 (1999) 034016						
Phys. Dov. (92 (2010) 025209						
			Friys.	REV. (11
			Phys.	Rev. I	D83 (2011) 014006,	

What can be done with 10^12 J/psi?

- PWA is the key tool
 - Computing is NOT an issue
 - Ambiguity from small component (THE main source of sys.err) will be reduced
 - Finer models are required to fit the data (THE main trouble for hadron spectroscopy)
- The real question: any golden channels remained in post-BES3 era because of "10 B is not enough"???
 - Glueballs
 - Br of J/psi radiative decays into benchmark channels are large enough
 - Hybrids
 - E.g. Br(chi_c1->pi1(1600)pi->eta'pi+pi-)~10^-4
 - "Picky" mode for low BG
 - E.g. J/psi-> gamma K_S K_S eta, J/psi->gamma eta' pi0 pi0

QCD exotics (more)

Heavy glueball

- "cleaner" environment, the meson states are much less numerous than in the light-quark sector and seem to be rather narrow-> reduced mixing
- 2 exotic glueballs (AKA "oddballs")
 - m(0+-) = 4140(50)(200) MeV
 - m(2+-) = 4740(70)(230) MeV
- Low production rate (VS PANDA)

QCD exotics (more)

- Transition of psi_g(hybrid)
 to 0-+, 1-+, 2-+
 - Signature decay patterns
 - Unknown transition rate
 - input from China LQCD group?

 Decay of psi_g-> light hadrons offers the interesting possibility to produce light exotic meson

- Condition for DCPV: |Ā/A|≠1
- Need \overline{A} and A to consist of (at least) two parts
 - with different weak (ϕ) and strong (δ) phases
- Often realised by "tree" and "penguin" diagrams

$$A = |T|e^{i[\delta_{T}-\phi_{T}]} + |P|e^{i[\delta_{P}-\phi_{P}]} \quad \overline{A} = |T|e^{i[\delta_{T}+\phi_{T}]} + |P|e^{i[\delta_{P}+\phi_{P}]}$$
$$A_{CP} = \frac{|\overline{A}|^{2} - |A|^{2}}{|\overline{A}|^{2} + |A|^{2}} = \frac{2|T||P|\sin(\delta_{T}-\delta_{P})\sin(\phi_{T}-\phi_{P})}{|T|^{2} + |P|^{2} + 2|T||P|\cos(\delta_{T}-\delta_{P})\cos(\phi_{T}-\phi_{P})}$$

Multibody hadronic decays may provide a good lab to search for new sources of CPV

Problem with two-body decays:

• 2 observables (B, A_{CP})

• 4 unknowns (|T|, |P|,
$$\delta_T - \delta_P$$
, $\varphi_T - \varphi_P$)

- More observables (B & A_{CP} at each Dalitz plot point)
- Using isobar formalism, can express total amplitude as coherent sum of quasi-two-body contributions

$$A(m_{12}^2, m_{23}^2) = \sum_r c_r F_r(m_{12}^2, m_{23}^2)$$

- where $c_{f} \& F_{f}$ contain the weak and strong physics, respectively
- n.b. each c_i is itself a sum of contributions from tree, penguin, etc.
- Interference provides additional sensitivity to CP violation

Hadron spectroscopy in charm Dalitz plot analysis

- Direct Dalitz plot analysis

 Model independent (e.g. two-sample chi^2 tests, anisotropy
 ("Miranda"method), etc.)
- Dalitz plot analysis with hadronic input
 - increases sensitivity: differential observables
 - allows one to connect various reactions
 - necessary for quantitative extraction of weak phases
 - model dependence

Phys. Rev. D 78, 012004 (2008) [13 pages]

Evidence for direct *CP* violation from Dalitz-plot analysis of $B^{\pm} \rightarrow K^{\pm} \pi^{\mp} \pi^{\pm}$

$$44 \pm 10 \pm 4^{+5}_{-13}$$
 3.7 σ

Who is part of les Nabis

from theory:

I. Bigi, S. Gardner, C. Hanhart, B. Kubis, T. Mannel, U.-G. Meißner, J.R. Pelaez, M.R. Pennington

from experiment:

I. Bediaga, A.E. Bondar, A. Denig, T.J. Gershon, W. Grandl, B.T. Meadows, K. Peters, U. Wiedner, G. Wilkinson

The goals of les Nabis to do all this ...

wrap-up

- Strong amplitudes as inputs are crucial in Daltiz plot analysis (especially, direct CPV)
- Highly excited charmonium data sets, the program can be enriched by the studies of heavy QCD exotics
- J/psi, psi' data sets,
 - BES3 physics programs: if BES3 can accomplish its duty, is there any "remained" golden channel?