

Master to Ph.D. Candidate Defense Report

Bo Wang (王博) SA21004022

≻Personal Introduction

► Research Situation

DSearch for $J/\psi \rightarrow \gamma D^0/\overline{D}^0$ on BESIII

\BoxStudy of K_s^0 efficiency in ψ (3770) data on BESIII

■Study of simulation and reconstruction of EMC on STCF

➢Summary and Future Plan

Personal Introduction

➤Basic situation

■Name: Bo Wang (王博) ■Student ID: SA21004022 ■Major: Particle and Nuclear Physics ■Supervisor: Haiping Peng(彭海平)

≻Education

2017-2021: Bachelor of Physics at Sichuan University2021-now: Master student in Particle and Nuclear Physics at USTC

Personal Introduction

➤Scores

学号: SA21004022	姓名:王博	校验结果:尚未合格			
您适用的培养计划标准:	物理学硕士	重新进行培养计划校验			
培养计划校验详情:	缺学位论文开题报告;				
培养计划标准备注:					
培养计划要求	已经获得学分	是否合格			
总学分(带必修环节)>=35	总学分=35	合格			
基础课加权平均>=75	基础课加权平均=87	合格			
基础课学分>=16	基础课学分=24	合格			
学科基础课学分>=8	学科基础课学分=8	合格			
公共必修课学分=7	公共必修课学分=7	合格			
基础英语课学分>=2	基础英语课学分=2	合格			
应用英语课学分>=2	应用英语课学分=2	合格			
学位论文开题报告		尚未合格			

Personal Introduction

Research Situation

► BEPCII and BESIII

Double ring: e^+ and e^- Circumference: 237.53m Cross angle: 2 × 11 mrad E_{cm} =2.0-4.6 GeV (2.0-4.95 GeV since 2019) Peak luminosity: 1.1×10^{33} cm⁻²s⁻¹@ ψ (3770)

Bo Wang (王博)

BEPCII and **BESIII**

Search for $J/\psi \rightarrow \gamma D^0/\overline{D}^0$ on BESIII

Motivation

In the standard model (SM), due to Glashow-Iliopoulos-Maiani (GIM) mechanism, flavor changing neutral currents (FCNC) is forbidden at the tree level but can occur at the loop level.

- ➤FCNC process is a good probe for New Physics beyond SM.
- >10 billion J/ψ data with clean environment provides an exceptional condition to study FCNC process.

Analysis Strategy

- The signal is reconstructed by a D^0/\overline{D}^0 from D tag channels and a photon.
- ➢Blind analysis strategy is adopted to avoid bias by only using total inclusive MC and part of the data.
- ≻Reconstructed D mass is used to extract signal.
- ➤The upper limit will be given if no obvious signal is found.
- ► Lots of kinds of background □Alternative kinematic fit for K/π misidentification □Mass window for K_S^0 , ω and K decay □TMVA method for K_L^0 background □E/P for e misidentification

Bo Wang (王博)

Result

- ≻No obvious signal is observed.
- ≻Bayes Method is used to calculate the upper limit
- ➤Likelihood of three channels with systematic uncertainty is combined to get the upper limit at 90%C.L.

> The upper limit: $\text{Br}(J/\psi \rightarrow \gamma D^0/\overline{D}^0) < 3.04 \times 10^{-7}$

Bo Wang (王博)

Search for $J/\psi \rightarrow \gamma D$

Prospect

- The upper limit of branching fraction measurement and systematic uncertainty analysis have already been completed.
- ➢ This work has been reported at BESIII Physics & Software workshop and New Physics Group.
- The memo is prepared and being reviewed by supervisor and the next step is reviewed by collaboration.

Search for $J/\psi \rightarrow \gamma D$

9

Bo Wang (王博)

Study of K_s^0 efficiency in ψ (3770) data on BESIII

- ➢ BESIII Collaboration has taken 5*fb*⁻¹ new data sample (round15) at ψ(3770) in 2021.
 ➢ A service work for charm physics analysis.
- ≻All 8 $fb^{-1}\psi$ (3770) data is used.
- ≻Control sample: $D^0\overline{D}^0$ and D^+D^- sample
- > Double-tag and missing K_S^0 method
- Vertex fit and second vertex fit select find and not find sample

≻Simultaneous fit

- ■Ratio of $K_S^0 \to \pi^+\pi^-$ and $K_S^0 \to \pi^0\pi^0$: Fixed by inclusive MC ■Ratio of K_S^0 and K_L^0 : Corrected by PDG and floated
 - with a constrain.

Ks efficiency

	Tag r	node	Signal mode		de
	$D^0 \to K$	$\overline{D}{}^0 \rightarrow K_S^0 \pi^+ \pi^-$ +c.c.			
	$D^0 \to K^-$	$\overline{D}^0 \to K_S^0 \pi^+ \pi^- \pi^0$		π^0 +c.c.	
	$D^0 \to K^- \pi$	$\overline{D}{}^0 \rightarrow K_S^0 \pi^0$ +c.c.			
	$D^+ \rightarrow K^- \pi^+ \pi^+ ++ \text{c.c.}$		D^{-}	$\rightarrow K_S^0 \pi^-$	+c.c.
lag 🖡	$\overline{D}^0(D^-)$		D^{-} -	$\rightarrow K_S^0 \pi^- \tau$	τ ⁰ +c.c.
e^+ $\psi(3770)$ e^- $D^0(D^+)$ Signal			$D^- \rightarrow$	$K_S^0 \pi^+ \pi^-$	π^{-} +c.c.
		400 350 300 50 200 150 0.1 0.15 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	• Data • Signal • Other in D'D'me • Sidehand .3 0.35 0.4 Primisa(GeV/c ²)	(E0000) 2000 1500 500 8.1 0.15 0	Data Signal Signal Background K, S ⁰ Background K, I ² Background K, I ² Background T, I ² Backgroun
		€1400 1200 1000 50 1000 50 1000 50 1000 50 1000 50 1000 50 100	• Data • Signal • Other in D'D'me • Sideband 	(E1000 800) / stue 400 200 8.1 0.15 0	2 0.25 0.3 0.35 0.4 M ² _{miss} (GeV/c ²)
ICV				1	0

Bo Wang (王博)

Result and Prospect

- ► Difference of efficiency between data and MC
 - \geq ~2% for momentum <0.2GeV with error ~1%
 - <2% for momentum >0.2GeV with error 1%

- \succ This work has been reported at **BESIII** Physics & Software workshop and Charm Group.
- \succ The analysis memo is preparing.

Memo version 1.0

Study of simulation and reconstruction of EMC on STCF

- The electromagnetic calorimeter (EMC) is a important subdetector of the STCF detector.
- Energy and position measurements for photons, electrons and hadrons with high resolution.

What to do: Test the performance of EMC Explore new geometry Study simulation with machine learning Particle identification base on EMC

Summary and Future Plan

Summary

- The upper limit of FCNC process $J/\psi \rightarrow \gamma D^0/\overline{D}^0$ on BESIII is measured which is $< 3.04 \times 10^{-7}$, and the memo is prepared.
- > The K_S^0 efficiency in $\psi(3770)$ data on BESIII is calculated and memo preparing.
- Preliminary understand the geometry and the physical process, the software of simulation and reconstruction of EMC on STCF.

Future Plan

- ≻Finish the present work on BESIII
- ≻Go on doing physics analysis on BESIII
- ≻Go on doing the work for simulation and reconstruction of EMC on STCF

≻Still many things to learn

Thank for your listening!

Bo Wang (王博)

Future Plan