# Consideration on PID detector at super tau-charm machine

Ming Shao

#### PID detector aim

- Enable  $\pi/K$  (K/p) separation up to p=2GeV/c
- Suitable for high luminosity run fast
- Radiation hard, especially in the endcap region
- Compact reduce costs of the outer detectors
- Modest material budget

## Specific energy loss

- dE/dx in the gaseous tracking detector (MDC) can be used for low momentum PID
- Better dE/dx resolution for longer track length
- Example:  $^{\circ}6\%$  at BESIII MDC (track length  $^{\circ}0.7$ m)  $\rightarrow$  clean  $\pi/K$  ID for p<0.8GeV/c

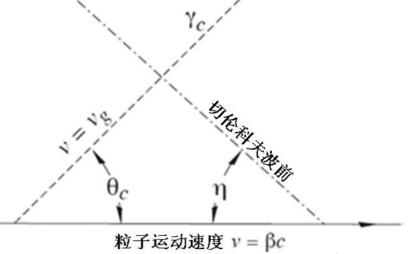
How about 0.8<p<2Gev/c?</li>

## Time of Flight?

- $\Delta\beta/\beta = \Delta T/T = \Delta m^2/2p^2$
- $\Delta T = L/c\beta * \Delta m^2/2p^2 \sim L/c * \Delta m^2/2p^2$
- For  $\pi/K$  at p=2GeV/c,  $\Delta T \sim 0.1$ ns\*L(m) = 100ps at L $\sim$ 1m. So for  $3\sigma$   $\pi/K$  separation an overall TOF time resolution  $\sim$ 30ps is needed.
- This is hard to achieve.

Other PID technique is mandatory.

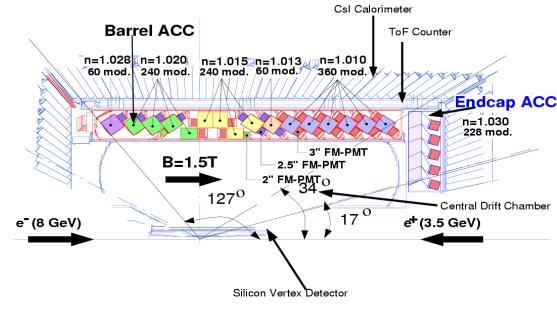
# K/p separation?

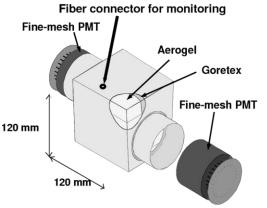

- $\Delta\beta/\beta = \Delta T/T = \Delta m^2/2p^2$
- $\Delta T = L/c\beta * \Delta m^2/2p^2 \sim L/c * \Delta m^2/2p^2$
- For K/p at p=2GeV/c,  $\Delta T \sim 0.27$ ns\*L(m) = 270ps at L $\sim$ 1m. So for  $3\sigma$  K/p separation an overall TOF time resolution  $\sim$ 90ps is needed.

This is achievable with TOF.

#### Cherenkov detector

Cherenkov radiation:

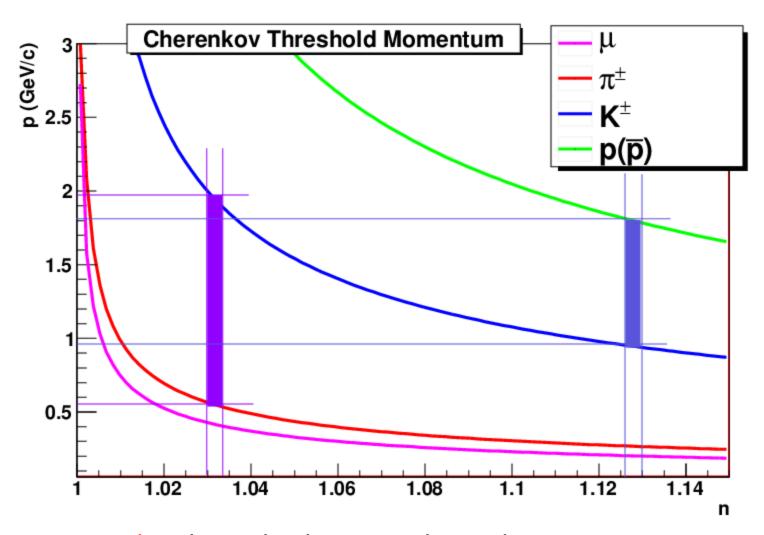

Radiation if particle velocity larger than speed of light in medium




- Commonly used in HEP experiment to identify particles at high momentum
- Two catalogs
  - Threshold Cherenkov simple to build
  - Imaging Cherenkov: RICH(large momentum range)/DIRC/TOP(most compact)

#### Design - 1

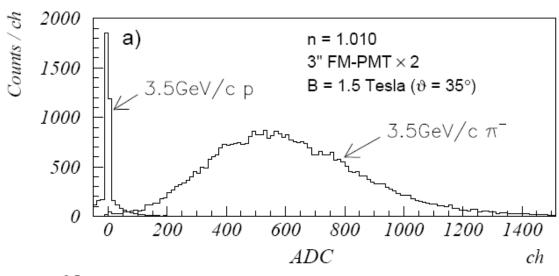
- A threshold Cherenkov detector (π/K), plus a TOF
- Similar to BELLE ACC design
- n~1.03, TOF resolution ~90ps
- Technically simple
- But need more space to accommodate more materials

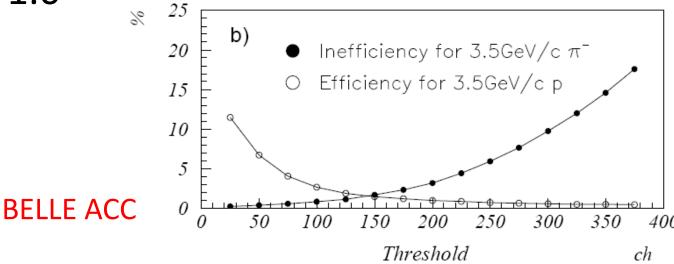





Threshold Cherenkov detector module

Plastic scintillator + PMT or MRPC can be used for TOF

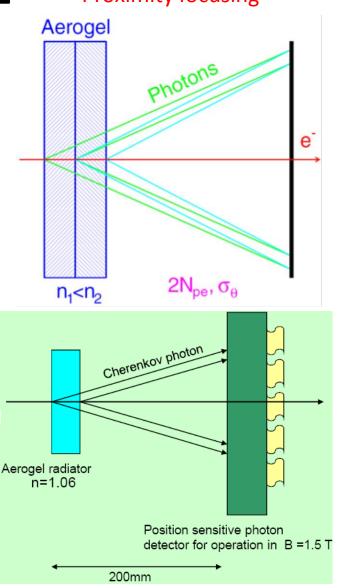

#### Radiator index choice




Aerogel is the only choice in this index range

# Expected performance - 1

- n = 1.030,  $\pi/K$ separation 0.8-2.5GeV/c
- n = 1.010,  $\pi/K$ separation 1.0-3.5GeV/c






#### Design - 2

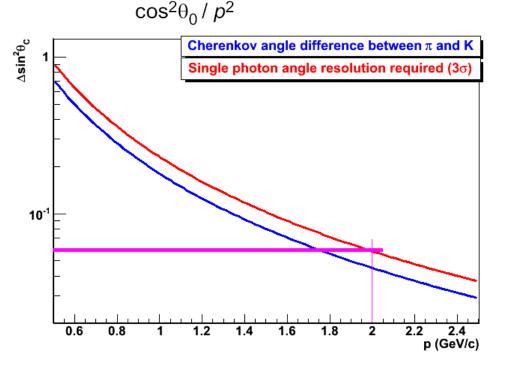
**Proximity focusing** 

- No TOF, PID by RICH only
- Similar to BELLE-II ARICH design, aerogel + HAPD readout
- n~1.13 (Below threshold for proton at p<2GeV/c)</li>
- Already proven at the endcap, how about the barrel part?
- Need R&D



#### Relevant formulae and figures

$$\sin^{2}\theta_{\bar{C}} = \sin^{2}\theta_{0} - \cos^{2}\theta_{0} \frac{m^{2}}{p^{2}}$$


$$\cos\theta_{0} = \frac{1}{n} \quad \cos\theta_{\bar{C}} = \frac{1}{n\beta} \qquad \frac{1}{\beta^{2}} = \frac{m^{2}}{p^{2}} + 1$$

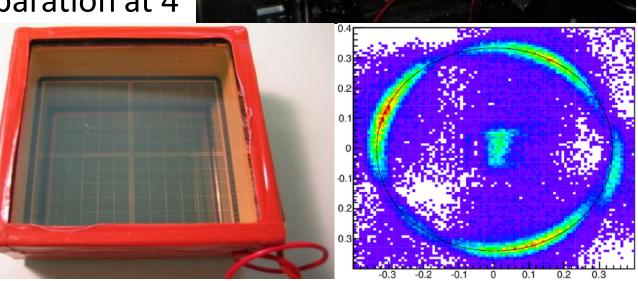
$$\Delta \sin^{2}\theta_{\bar{C}} = \cos^{2}\theta_{0} \frac{m_{1}^{2}}{p^{2}} - \cos^{2}\theta_{0} \frac{m_{2}^{2}}{p^{2}} = \frac{1}{n^{2}} \frac{\Delta m^{2}}{p^{2}}$$

$$\Sigma_{m}^{2}(p) = \delta^{2}(\sin^{2}\theta_{\bar{C}}) + 4\cos^{4}\theta_{0} \frac{m^{4}}{p^{4}} (\frac{\delta p}{n})^{2} \sim \delta^{2}(\sin^{2}\theta_{\bar{C}})$$

 $\begin{array}{c}
e \\
N_1 \quad N_1 = \mathcal{N}_0 T \sin^2 \theta_0 \\
\text{Support} \\
p \quad K
\end{array}$ 

Take n=1.13,  $N_{photon}$ =10  $\rightarrow$  ~60mrad single photon resolution is needed for 3 $\sigma$   $\pi/K$  separation at p=2GeV/c  $\rightarrow$  correspond to ~20mm photon sensor size (with proximity gap T=10cm)

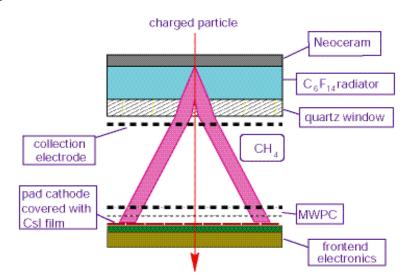


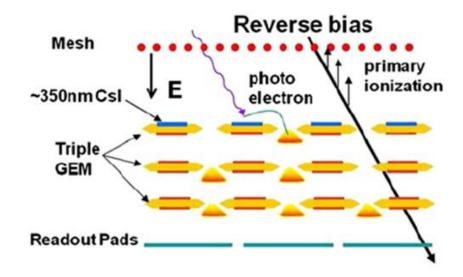

#### Expected performance - 2

- double aerogel,  $n_0=1.050, 1.065$
- Proximity gap = 200mm
- $\theta_c$ =336mrad
- $\sigma_{\theta}$ =15.8mrad
- $N_{det} = 11.4$

#### **BELLE-II ARICH**

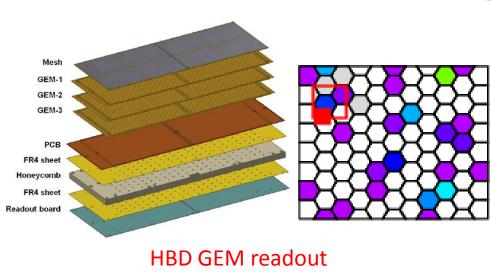
• >5.5  $\sigma \pi/K$  separation at 4

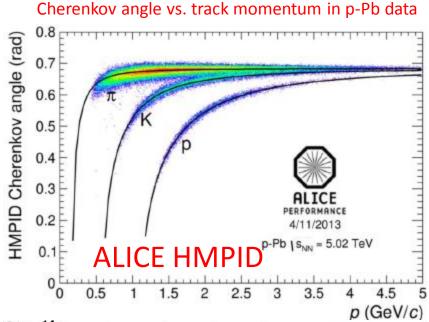

GeV/c

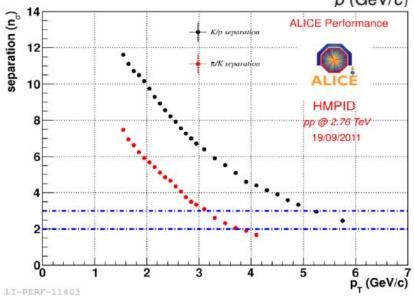



~5mm photon sensor size

#### Design - 3


- PID by RICH only
- Similar to ALICE HMPID design, but with PHENIX HBD (Csl coated GEM) readout
- n~1.3 (liquid C<sub>6</sub>F<sub>14</sub>), UV detection
- Already proven
- Immune to B field → same structure at both the endcap and the barrel
- Need R&D




#### Expected performance - 3

- Liquid C<sub>6</sub>F<sub>14</sub> radiator
   n~1.3 @ 175nm
- Proximity gap = 80mm
- MWPC readout pad size 8mm×8.4mm
- >3  $\sigma \pi/K$  separation at 3 GeV/c







# MORE THOUGHTS AND SUGGESTIONS ARE WELCOME! THANKS!