Coupled-channel analysis of $e^+e^- \rightarrow \pi D^*\overline{D}, J/\psi\pi\pi, J/\psi\eta$

Satoshi Nakamura

Note: This is an intermediate report.

All results are preliminary and may change later.

Treat results as unpublished data. Keep it within our USTC group.

Introduction

Many exotic hadron candidates (XYZ) discovered by BESIII, Belle, LHCb, ... , experiments

Establishing the exotic hadrons (existence & structure) is highly controversial issue !

BESIII data for XYZ physics (only selected ones)

Outstanding question in XYZ physics : Y puzzle

• Why Y states seem to have different widths for different final states ?

• Why Y(4320) appears only in $e^+e^- \rightarrow J/\psi \pi \pi$?

How to find solution to Y puzzle?

Analyze different final states with different models (usual experimental method)

Analyze different final states simultaneously with a unified model

- $e^+e^- \rightarrow J/\psi \pi^+\pi^-$, $h_c \pi^+\pi^-$, $\pi^+D^0D^{*-}$ total cross section data were simultaneously fitted
- $\psi(4160)$, $\psi(4415)$, Y(4220), and background are included
- Integrated final three-meson distribution is assumed be proportional to phase-space

Previous work on Y puzzle

- Conclusions: Different Y widths are caused by interference between $\psi(4160)$, $\psi(4415)$, Y(4220), and background
 - Y(4320) and Y(4390)-like enhancements are from interference

The conclusions are still not excluded by the current data

Criticism 1 : $J/\psi\pi\pi$ lineshape seems qualitatively different from high-precision data

(even though barely consistently within errors)

Criticism 2 : seems difficult to explain Y(4390) in other data not fitted (why didn't they include $\psi' \pi^+ \pi^-$ data ?)

Criticism 3 : Integrated final three-meson distribution is assumed be proportional to phase-space

← final three-meson distributions are very different from phase-space shape assumption may be bad

My opinion: the interferences could play some role, but is inconclusive solution to Y puzzle

This work addresses the Y problem

Method

Analyze $e^+e^- \rightarrow \pi D^*\overline{D}$, $J/\psi\pi\pi$, $J/\psi\eta$ BESIII data simultaneously with a unified coupled-channel model

Both total and differential cross section data are fitted

Nature of Zc(3900) and Y(4320) is also studied

Analyze BESIII data in 3.8 $\leq \sqrt{s} \leq 4.5$ GeV region

Charmonia included in model : $\psi(3770)$, $\psi(4040)$, $\psi(4160)$, Y(4220)

Well-established $c\bar{c}$

Exotic candidate $D_1\overline{D}$ molecule

 $c\bar{c}g$ hybrid

Decay processes of ψ and Y

Coupled-channels and unitarity (conservation of probability) are taken into account

Decay processes of ψ and Y

(selected important diagrams; diagrams with more

loops are usually more suppressed)

Non-resonant amplitudes are also considered in the model

 $\stackrel{\psi, Y}{=} \rightarrow \qquad \stackrel{\gamma^*}{\checkmark} \qquad \stackrel{1}{\checkmark}$

15

Decay processes of ψ and Y

We do NOT consider
$$\psi, Y = \underbrace{D_J}_{D}$$

 \overline{D}
 \overline{D}
 \overline{D}

- $D_J D\eta$ coupling is unknown, and difficult to determine by fitting data
- This mechanism should be smaller than tree graph

Triangle singularity (TS)

Kinematical condition for TS

Energy-momentum is conserved everywhere as classical process

 \rightarrow amplitude is significantly enhanced at

 $\sqrt{s} \sim m_{D_1} + m_{\overline{D}}$ (4.3 GeV) and $M_{D^*\overline{D}} \sim m_{D^*} + m_{\overline{D}}$ (3.88 GeV) $M_{J/\psi\pi}$

Triangle singularity (TS)

Kinematical condition for TS

Energy-momentum is conserved everywhere as classical process

 \rightarrow amplitude is significantly enhanced at

 $\sqrt{s} \sim m_{D_1} + m_{\overline{D}}$ (4.3 GeV) and $M_{D^*\overline{D}} \sim m_{D^*} + m_{\overline{D}}$ (3.88 GeV) $M_{J/\psi\pi}$

Triangle singularity (TS)

Kinematical condition for TS

Energy-momentum is conserved everywhere as classical process

 \rightarrow amplitude is significantly enhanced at

 $\sqrt{s} \sim m_{D_1} + m_{\overline{D}}$ (4.3 GeV) and $M_{D^*\overline{D}} \sim m_{D^*} + m_{\overline{D}}$ (3.88 GeV) $M_{J/\psi\pi}$

No TS in $e^+e^- \rightarrow J/\psi \eta$

This triangle diagram does not satisfy TS condition

Most triangle diagrams do not satisfy TS condition

- $e^+e^- \rightarrow \pi D^*\overline{D}$, $J/\psi\pi\pi$, $J/\psi\eta$ total cross section data are fitted simultaneously with coupled-channel model
- $\sqrt{s} \le 4.35$ GeV region is well fitted (maybe improvable more)
- $\sqrt{s} > 4.35$ GeV region would need Y(4390) and $\psi(4415)$ for further improvements

Addressing Y puzzle

- Y(4220) structure is formed by Y(4220), $\psi(4160)$, and their interference (similar result as Chen et al.)
- Large bump at $\sqrt{s} \sim 4.4$ GeV is mostly from tree

← suppressed in $\sqrt{s} < m_{D_1} + m_{\overline{D}} = 4.3$ GeV, but rapidly increasing phase-space above threshold (Different result from Chen et al.

who did not consider ψ decays through $D_1\overline{D}$)

- TS-induced enhancements at $\sqrt{s} \sim 4.3 \text{ GeV}$ Clear in $\psi(4160)$ decay
- Fit is further improvable by adding $\psi(4415)$, Y(4390)

Addressing Y puzzle

 σ (pb)

- Y(4220) structure is formed by Y(4220), $\psi(4040)$, TS, and their interference
- TS-induced enhancements at $\sqrt{s} \sim 4.3$ GeV

Different conclusion from Chen et al. (interference) who did not consider TS

Addressing Y puzzle

- Y(4220) structure is formed by Y(4220), $\psi(4160)$, and their interference
- No TS exists \rightarrow No Y(4320)
- Y(4390) would be needed to fit peak at $\sqrt{s} \sim 4.38$ GeV

Differential cross sections

 $e^+e^-
ightarrow J/\psi \ \pi^+\pi^-$

- Overall, fit is good
- Zc(3900)-like peak overshoots
- data for \sqrt{s} = 4.26 GeV

 \leftarrow to be improved

 Good fits of differential cross sections support our solution of Y puzzle

$e^+e^- \rightarrow J/\psi \ \pi^+\pi^-$ at \sqrt{s} = 4.23 GeV

Zc(3900) as TS

This interpretation has been discussed since the discovery of Zc(3900); not conclusive yet.

Combined analysis of total and differential cross sections may be important to address the nature of Zc(3900) 27

Differential cross sections $e^+e^- \rightarrow \pi^+ D^0 D^{*-}$

- Overall, fit is good
- Zc(3900)-like peak near $M_{D^*\overline{D}} \sim m_{D^*} + m_{\overline{D}}$ (TS effect)
- Fits will be improved more
- Good fits of differential cross sections support our solution of Y puzzle

Zc(3900) as **TS**

Because of TS, one-loop amplitude is enhanced significantly at $M_{D^*\overline{D}} \sim m_{D^*} + m_{\overline{D}}$ (3.88 GeV)

The Y problem is addressed

By analyzing $e^+e^- \rightarrow \pi D^*\overline{D}$, $J/\psi\pi\pi$, $J/\psi\eta$ BESIII data simultaneously with a coupled-channel model

Both total and differential cross section data were fitted

(Tentative) Conclusion 1 : Y puzzle can be solved as follows:

	Y(4220)-like width is mainly from:	Y(4390)-like structure is mainly from:
$e^+e^- \rightarrow \pi^+ D\overline{D}^*$	Y(4220), $\psi(4160)$, and their interference	Rapidly increasing phase-space for $D_1\overline{D}$
$e^+e^- \rightarrow J/\psi\pi\pi$	Y(4220), ψ (4040), TS, and their interference	No structure
$e^+e^- \rightarrow J/\psi\eta$	Y(4220), $\psi(4160)$, and their interference	Seems Y(4390) resonance

(Tentative) Conclusion 2 : Y(4320) and Zc(3900) are consistent with TS enhancements

Remaining tasks

- Improve fits
- Write a paper
- Include $\psi(4415)$, Y(4390) to better describe higher \sqrt{s} region
- Include $\psi'\pi\pi$ and $h_c\pi\pi$ final state data in the fits

Maybe another paper

• Include more coupled-channels, such as $D_1\overline{D}^*$