Measurements of SCS process $\Lambda_c^+ \rightarrow p\pi^0$ and $\Lambda_c^+ \rightarrow p\eta$ with double-tag method

Jiaxiu Teng^{1,2}, Linxuan Zhu³, Weiping Wang^{1,2}, Cong Geng⁴, Yi Jiang^{1,2}, Yingchun Zhu^{1,2}, Yangzheng Zheng³

> ¹University of Science and Technology of China ²State Key Laboratory of Particle Detection and Electronics ³University of Chinese Academy of Sciences ⁴Sun Yat-sen (Zhongshan) University

> > March 7, 2022

< ロ > < 同 > < 三 > < 三 >

Motivation

• Two-body nonleptonic weak hadronic decay: understand the mechanism of charm baryons, test different theoretical models

 \rightarrow the Cabibbo Suppressed (CS) decays

Cabbibo suppression $\rightarrow \mathcal{B} \sim 10^{-3}$ - $10^{-4} \rightarrow$ difficult to measure

- The hadronic decay amplitudes of Λ_c^+ :
 - factorizable
 - nonfactorizable: W-exchange, internal W-emission

SCS decays containing both contributions provide information about their interference.

Validate different phenomenological models.

Feynman diagrams of $\Lambda_{\rm c} \to p \pi^0$ at lowest order is shown below

Motivation

- Experimentally, the absolute BFs of 12 CF Λ_c^+ decays were measured by BESIII with much improved precision in 2016.
- Various phenomenological models prediction for $\mathcal{B}(\Lambda_c^+ \to n\pi^+)/\mathcal{B}(\Lambda_c^+ \to p\pi^0)$:
 - SU(3) flavorsymmetry model : 2
 - Constituentquark model : 4.5 or 8.0
 - Dynamical calculation basedon pole model and current-algebra : 3.5
 - SU(3) flavor symmetry including the contributions from $\mathcal{O}(\bar{15})$: 4.7

個 と く ヨ と く ヨ と

Data Sets

- Boss version: 7.0.6
- Data: XYZ data, *E_{cms}* from 4.6 4.7GeV
- MC for single-tag(ST) efficiency:
 - $e^+e^- \rightarrow \Lambda_c^+ \bar{\Lambda}_c^-, \Lambda_c^+ (\bar{\Lambda}_c^-)$ decays to one of the tag modes, $\bar{\Lambda}_c^- (\Lambda_c^+)$ decays inclusively.
- MC for double-tag(DT) efficiency:

 $e^+e^- \rightarrow \Lambda_c^+ \bar{\Lambda}_c^-, \Lambda_c^+ (\bar{\Lambda}_c^-)$ decays to one of the tag modes, $\bar{\Lambda}_c^- (\Lambda_c^+)$ decays to $p\pi^0(\gamma\gamma)$ and $p\eta(\gamma\gamma)$.

- Inclusive MC:
 - 40x $\Lambda_c^+ \bar{\Lambda}_c^-$ MC.
 - 40x Hadron MC.

Energy point	$E_{cms}(MeV)$	$\mathcal{L}(pb^{-1})$	Run number
4600	4599.53	$586.9 \pm 0.1 \pm 3.9$	35227-36213
4626	4628.00	$521.52 \pm 0.11 \pm 2.76$	63075-63515
4640	4640.91	$552.41 \pm 0.12 \pm 2.93$	63516-63715
4660	4661.24	$529.63 \pm 0.12 \pm 2.81$	63718-63852
4680	4681.92	$1669.31 \pm 0.21 \pm 8.85$	63867-64015, 64365-65092
4700	4698.82	$536.45 \pm 0.12 \pm 2.84$	64028-64313

Analysis strategy

• use double-tag(DT) method, tag side: 9 tag modes, signal side: $\Lambda_c^+ \rightarrow p \pi^0 (\Lambda_c^+ \rightarrow p \eta)$

Modes	Absolute \mathcal{B} (%)	subsequent \mathcal{B} (%)	total \mathcal{B} (%)
$\Lambda_{\rm c}^+ \to p K^- \pi^+$	$6.28{\pm}0.32$	-	$6.28{\pm}0.32$
$\Lambda_{ m c}^+ ightarrow p K_{ m S}^0$	$1.59{\pm}0.08$	69.2	$1.10{\pm}0.06$
$\Lambda_{\rm c}^+\to\Lambda\pi^+$	$1.30{\pm}0.07$	63.9	$0.83{\pm}0.04$
$\Lambda_{\rm c}^+ \to p K^- \pi^+ \pi^0$	$4.46{\pm}0.30$	98.8	$4.41 {\pm} 0.30$
$\Lambda_{ m c}^+ ightarrow p K_{ m S}^0 \pi^0$	$1.97{\pm}0.13$	69.2×98.8	$1.35{\pm}0.06$
$\Lambda_{\rm c}^+ \to \Lambda \pi^+ \pi^0$	$7.1 {\pm} 0.4$	63.9×98.8	$4.48{\pm}0.25$
$\Lambda_{ m c}^+ ightarrow p K_{ m S}^0 \pi^+ \pi^-$	$1.60{\pm}0.12$	69.2	$1.11{\pm}0.08$
$\Lambda_{\rm c}^+\to\Lambda\pi^+\pi^+\pi^-$	$3.64{\pm}0.29$	63.9	$2.33{\pm}0.19$
$\Lambda_{\rm c}^+\to \Sigma^0\pi^+$	$1.29{\pm}0.07$	63.9	$0.82{\pm}0.04$

個 と く ヨ と く ヨ と

Event Selection

Good Charged Tracks	$K_{\rm s}^0$ reconstruction
• $ V_r < 1$ cm, $ V_z < 10$ cm, $ cos\theta < 0.93$	 A pair of charged tracks with opposited charge: V_z < 20cm, cosθ < 0.93
PID	• Vertex fit, $\chi^2 < 100$
 p:p(p)>p(π), p(p)>p(K) π :p(π)>p(p), p(π)>p(K) K :p(K)>p(p), p(K)>p(π), p(K)>0.0005 	• Second vertex fit, $L/\delta L > 2$ • $0.487 < M_{k_S^0} < 0.511 \text{GeV}/c^2$
	A reconstruction
Good photons • $0 \le T \le 700 \text{ ns}$ • $E_{\gamma} > 25 \text{MeV}, cos\theta < 0.8 \text{ for barrel}$ • $E_{\gamma} > 50 \text{MeV}, 0.86 < cos\theta < 0.92 \text{ for endcap}$	 charged tracks with opposited charge: V_z < 20<i>cm</i>, PID for p Vertex fit, χ² < 100 Second vertex fit, L/δL > 2 1.111 < M_Λ < 1.121GeV/c²
π^0 reconstruction	
 1C kinematic fit: χ²_{KF} < 200 0.115 < M_{γγ} < 0.150GeV/c² 	• 1.179 < $M_{\Lambda\gamma}$ < 1.203GeV/ c^2
Jiaxiu Teng Measurements of SCS process $\Lambda_{c}^{+} \rightarrow p\pi^{0}$	and $\Lambda_{a}^{+} \rightarrow pn$ with double-tag method 6

ΔE cut and background veto on tag side

- Extract Λ⁺_c with minimum ΔE, and ΔE requirements are shown in the right table
- $2.0 < M_{\Lambda_c^+} < 2.6 {\rm GeV}/c^2$
- For modes with same final states, add veto cuts shown below:

Tag mode	ΔE window (GeV)
$\Lambda_{\rm c}^+ \to p K^- \pi^+$	[-0.034, 0.02]
$\Lambda_{\rm c}^+ \rightarrow p K_{\rm S}^0$	[-0.02, 0.02]
$\Lambda_{\rm c}^+ \to \Lambda \pi^+$	[-0.02, 0.02]
$\Lambda_{\rm c}^+ \to p K^- \pi^+ \pi^0$	[-0.03, 0.02]
$\Lambda_{\rm c}^+ \rightarrow p K_{\rm S}^0 \pi^0$	[-0.03, 0.02]
$\Lambda_{\rm c}^+ \to \Lambda \pi^+ \pi^0$	[-0.03, 0.02]
$\Lambda_{\rm c}^+ \rightarrow p K_{\rm S}^0 \pi^+ \pi^-$	[-0.02, 0.02]
$\Lambda_{\rm c}^+ \to \Lambda \pi^+ \pi^+ \pi^-$	[-0.02, 0.02]
$\Lambda_{\rm c}^+ \to \Sigma^0 \pi^+$	[-0.02, 0.02]

Mode	peaking background	requirement to veto the peaking background
Λ^+ $\nu p V^0 \pi^0$	$\Lambda_{\rm c}^+ \to \Lambda \pi^+ \pi^0$	veto events with $M(p\pi^-)$ in (1.100, 1.125) GeV/c ²
$M_{\rm c} \rightarrow p M_{\rm S} \pi$	$\Lambda_{\rm c}^+\to \Sigma^+\pi^+\pi^-$	veto events with $M(p\pi^0)$ in (1.170, 1.200) GeV/c ²
$\Lambda_{\rm c}^+ \to p K_{\rm S}^0 \pi^+ \pi^-$	$\Lambda_{\rm c}^+ \to \Lambda \pi^+ \pi^+ \pi^-$	veto events with $M(p\pi^-)$ in (1.100, 1.125) GeV/c ²
$\Lambda_{\rm c}^+\to\Lambda\pi^+\pi^+\pi^-$	$\Lambda_{\rm c}^+ \to p K_{\rm S}^0 \pi^+ \pi^-$	veto events with $M(\pi^+\pi^-)$ in (0.490, 0.510) GeV/c ²

• • = • • = •

ST yields and efficiencies

• ST yields and efficiency are extracted by the unbinned maximum likelihood fits performed to all M_{BC} distributions. Total fit = MC shape \otimes Gaussian(Signal) + ARGUS function(Background) Yield region: (2.275,2.31)GeV/ c^2

ST yields

Modes	4.60GeV	4.626GeV	4.64GeV	4.66GeV	4.68GeV	4.70GeV
$\Lambda_{\rm c}^+ \to p K^- \pi^+$	6463±86	5741±85	5936±87	5706±84	16890±143	5024±78
$\Lambda_{\rm c}^+ \to p K_{\rm S}^0$	1270±37	1062±35	1106±35	1113±35	3353±61	967±33
$\Lambda_c^+ \to \Lambda \pi^+$	742±28	659±28	690±28	649±27	2007±47	520±24
$\Lambda_{\rm c}^+ \to p K^- \pi^+ \pi^0$	1487±52	1192±49	1256±50	1305±53	3854±92	1109±48
$\Lambda_{\rm c}^+ \to p K_{\rm S}^0 \pi^0$	496±28	469±29	484±30	475±28	1462±51	388±26
$\Lambda_c^+ \to \Lambda \pi^+ \pi^0$	1407±45	1162±42	1317±44	1157±41	3553±72	1054±40
$\Lambda_{\rm c}^+ \to p K_{\rm S}^0 \pi^+ \pi^-$	498±28	428±28	457±29	465±28	1299±50	426±27
$\Lambda_{\rm c}^+\to\Lambda\pi^+\pi^+\pi^-$	661±30	512±28	660±31	628±30	1802±51	557±28
$\Lambda_c^+\to \Sigma^0\pi^+$	396±21	329±20	344±20	343±20	1038±34	284±18

ST yields and efficiencies

- ST yields and efficiency are extracted by the unbinned maximum likelihood fits performed to all M_{BC} distributions. Total fit = MC shape \otimes Gaussian(Signal) + ARGUS function(Background) Yield region: (2.275,2.31)GeV/ c^2
- ST efficiencies(%)

Modes	4.60GeV	4.626GeV	4.64GeV	4.66GeV	4.68GeV	4.70GeV
$\Lambda_{\rm c}^+ \to p K^- \pi^+$	49.13±0.10	47.62±0.10	47.20±0.10	46.17±0.10	45.49±0.09	44.69±0.09
$\Lambda_{\rm c}^+ \to p K_{\rm S}^0$	55.69±0.25	51.62±0.25	50.92±0.24	49.75±0.24	48.14±0.23	47.33±0.23
$\Lambda_{\rm c}^+\to\Lambda\pi^+$	45.02±0.27	40.81±0.25	40.38±0.25	39.05±0.24	37.84±0.24	37.09±0.23
$\Lambda_{\rm c}^+ \to p K^- \pi^+ \pi^0$	$14.95{\pm}0.08$	$14.33{\pm}0.08$	$14.10{\pm}0.07$	$13.94{\pm}0.07$	$13.80{\pm}0.07$	13.59±0.07
$\Lambda_{\rm c}^+ \to p K_{\rm S}^0 \pi^0$	18.17 ± 0.14	17.13±0.14	17.11±0.14	16.56±0.13	16.55±0.13	16.22±0.13
$\Lambda_{\rm c}^+\to\Lambda\pi^+\pi^0$	$16.72{\pm}0.08$	15.23±0.07	15.28±0.07	$14.93{\pm}0.07$	14.62 ± 0.07	14.23 ± 0.07
$\Lambda_{\rm c}^+ \to p K_{\rm S}^0 \pi^+ \pi^-$	20.44±0.16	18.51±0.16	18.48 ± 0.16	18.31±0.15	17.84±0.15	17.75±0.15
$\Lambda_{\rm c}^+ \to \Lambda \pi^+ \pi^+ \pi^-$	13.72±0.09	12.48 ± 0.09	12.49±0.09	12.67±0.09	$12.26{\pm}0.08$	12.47 ± 0.08
$\Lambda_{\rm c}^+ \to \Sigma^0 \pi^+$	22.25±0.20	20.26±0.19	20.46±0.18	19.56±0.18	19.28±0.18	18.81±0.17

ST yields @4626 as demonstration

<ロト < 四ト < 三ト < 三ト

DT side analysis strategy

Search for $\Lambda_c \to p\pi^0(p\eta) \to p\gamma\gamma$ in the remaining objects recoiling against the ST Λ_c

- The selection criteria for the good charged tracks and the good photon, as well as the PID for the proton are exactly same as those in the ST analysis.
- Only one good charged track identified as proton and at least two good photons are required.
- To suppress multi-track background, require only one charged track that satisfies $|\cos\theta| < 0.93$, $|V_r| < 1cm$, $|V_z| < 10cm$, and no other track in $|V_z| < 20cm$
- To veto noise photons from anti-proton or proton interacting with the material in the EMC, the good photons are further required:
 - Lateral moment < 0.4 : The lateral moment of shower shape is required to be less than 0.4.
 - $E_{3\times3}/E_{5\times5} > 0.85$: $E_{3\times3}/E_{5\times5}$ is required to be larger than 0.85, where the $E_{3\times3}$ and $E_{5\times5}$ are the shower energy summed of 3×3 and 5×5 crystal around seed crystal.
 - $Angle_{\gamma \bar{p}} > 30^{\circ}$: The photons are requred to be apart from anti-proton with an opening angle larger than 30° .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Veto noise photons

• Distributions of true photon and noise photon shower shape parameters.

DT side analysis strategy

- To veto backgrounds with wrong combined Λ , $m_{tag\pi^- sig\bar{p}}$ in (1.111,1.121) GeV/ c^2 is vetoed, where $m_{tag\pi^- sig\bar{p}}$ is the invariant mass of $\pi^$ from ST side and \bar{p} from DT side.
- To veto backgrounds with wrong combined ω , $m_{\pi^+\pi^-\pi^0}$ in (0.713,0.813) GeV/ c^2 is vetoed, where $m_{\pi^+\pi^-\pi^0}$ is the invariant mass of any combination of $\pi^+\pi^-\pi^0$ in both ST and DT final states.

DT side analysis strategy

- With above selected proton and photons, the DT Λ_c signal is reconstructed with the proton and two photons with $\Delta E_{p2\gamma} = E_p + E_{\gamma 1} + E_{\gamma 2} E_{beam}$ be within (-0.08, 0.035)GeV.
- Combination with minimum $|\Delta E_{p2\gamma}|$ is kept for further analysis.
- After above selection criteria, three variables are used in the further analysis:
 - M_{γγ}: the invariant mass of two photon
 - M_{BC}^{ST} : the ST side beam energy constrained mass
 - $M_{BC}^{p2\gamma}$: the signal side beam energy constrained mass
- Fit region:
 - $M_{\gamma\gamma}: 0.115 < M_{\gamma\gamma} < 0.150 \text{ GeV}/c^2 \text{ for } \pi^0; 0.49 < M_{\gamma\gamma} < 0.583 \text{ GeV}/c^2 \text{ for } \eta$
 - $M_{BC}^{ST} > 2.2 {
 m GeV}/c^2$ and $M_{BC}^{p2\gamma} > 2.2 {
 m GeV}/c^2$

2D distributions of $M_{BC}^{p2\gamma}$ VS M_{BC}^{ST} in fit region is shown below:

Background Study and some distributions

Fit region:

- $M_{\gamma\gamma}$: 0.115 < $M_{\gamma\gamma}$ < 0.150 GeV/ c^2 for π^0 ; 0.49 < $M_{\gamma\gamma}$ < 0.583 GeV/ c^2 for η
- $M_{BC}^{ST} > 2.2 \text{GeV}/c^2$ and $M_{BC}^{p2\gamma} > 2.2 \text{GeV}/c^2$

 M_{BC}^{ST} and $M_{BC}^{p2\gamma}$ 1D distributions in fit region:

Modes	4.60GeV	4.626GeV	4.64GeV	4.66GeV	4.68GeV	4.70GeV
$\Lambda_{\rm c}^+ \to p K^- \pi^+$	23.88±0.06	23.39±0.06	23.36±0.06	22.99±0.06	22.68±0.06	22.32±0.06
$\Lambda_{ m c}^+ ightarrow p K_{ m S}^0$	28.48±0.15	26.54±0.15	25.90±0.15	25.37±0.15	24.60±0.14	24.03±0.14
$\Lambda_{\rm c}^+\to\Lambda\pi^+$	23.79±0.17	21.70±0.16	21.12±0.16	20.91±0.16	19.72±0.15	19.50±0.15
$\Lambda_{\rm c}^+ \to p K^- \pi^+ \pi^0$	8.27 ± 0.05	$8.02{\pm}0.05$	8.05 ± 0.05	$7.88{\pm}0.05$	$7.89{\pm}0.05$	7.83±0.05
$\Lambda_{ m c}^+ ightarrow p K_{ m S}^0 \pi^0$	8.65±0.09	$8.02{\pm}0.08$	$8.27{\pm}0.08$	$8.14{\pm}0.08$	$7.89{\pm}0.08$	7.84 ± 0.08
$\Lambda_{\rm c}^+\to\Lambda\pi^+\pi^0$	$8.93{\pm}0.05$	$8.18{\pm}0.05$	8.21±0.05	$7.97{\pm}0.05$	$7.78{\pm}0.04$	7.68 ± 0.04
$\Lambda_{\rm c}^+ \to p K_{\rm S}^0 \pi^+ \pi^-$	$8.54{\pm}0.09$	$7.78{\pm}0.09$	$7.80{\pm}0.09$	$7.79{\pm}0.09$	$7.66{\pm}0.09$	7.51±0.09
$\Lambda_{\rm c}^+ \to \Lambda \pi^+ \pi^+ \pi^-$	5.51 ± 0.05	5.11 ± 0.05	$5.12{\pm}0.05$	$5.18{\pm}0.05$	$5.26{\pm}0.05$	5.22±0.05
$\Lambda_{\rm c}^+\to \Sigma^0\pi^+$	13.51±0.13	11.93±0.13	11.78±0.12	11.24±0.12	11.11±0.12	10.80±0.12

・ロト ・四ト ・ヨト ・ヨト

Modes	4.60GeV	4.626GeV	4.64GeV	4.66GeV	4.68GeV	4.70GeV
$\Lambda_{\rm c}^+ \rightarrow p K^- \pi^+$	21.83±0.06	21.46±0.06	21.45±0.06	21.08±0.06	20.83±0.06	20.65±0.06
$\Lambda_{ m c}^+ ightarrow p K_{ m S}^0$	26.14±0.15	24.11±0.14	23.96±0.14	22.94±0.14	22.33±0.14	21.76±0.14
$\Lambda_{\rm c}^+\to\Lambda\pi^+$	21.78±0.16	19.77±0.15	19.36±0.15	18.71±0.15	17.98±0.15	17.76±0.15
$\Lambda_{\rm c}^+ \to p K^- \pi^+ \pi^0$	7.56 ± 0.04	7.26 ± 0.04	7.29 ± 0.04	7.27 ± 0.04	7.17 ± 0.04	7.16±0.04
$\Lambda_{ m c}^+ ightarrow p K_{ m S}^0 \pi^0$	$8.89{\pm}0.09$	$8.33{\pm}0.08$	8.39±0.08	$8.20{\pm}0.08$	$7.95{\pm}0.08$	7.89 ± 0.08
$\Lambda_{\rm c}^+ \to \Lambda \pi^+ \pi^0$	8.35±0.05	7.74 ± 0.04	7.74 ± 0.04	7.51 ± 0.04	7.36 ± 0.04	7.32 ± 0.04
$\Lambda_{\rm c}^+ \to p K_{\rm S}^0 \pi^+ \pi^-$	$8.60{\pm}0.09$	$7.88{\pm}0.09$	$7.91{\pm}0.09$	7.61 ± 0.09	$7.81{\pm}0.09$	7.66±0.09
$\Lambda_{\rm c}^+ \to \Lambda \pi^+ \pi^+ \pi^-$	$5.94{\pm}0.05$	$5.53{\pm}0.05$	$5.59{\pm}0.05$	$5.42{\pm}0.05$	$5.51{\pm}0.05$	5.52 ± 0.05
$\Lambda_c^+\to \Sigma^0\pi^+$	12.01±0.13	10.76±0.12	10.43±0.12	10.23±0.12	10.04±0.12	9.81±0.12

イロン イロン イヨン イヨン

Signal Extraction

 A simultaneous fit on 6 energy points is performed based on the 2D M_{BC} distributions. The total PDF used in the fit:

$$PDF = PDF_{\pi^0}(PDF_{\eta}) + PDF_{bkg}.$$
(1)

 $PDF_{\pi^0}(PDF_{\eta})$ is described by signal MC simulation. 2D background is estimated by:

$$PDF_{bkg}(x,y) = \operatorname{Argus}(x; m_x, z_x, \rho_x) \times \operatorname{Argus}(y; m_y, z_y, \rho_y) \times \operatorname{Student}(x - y; \mu, \sigma(x + y), N).$$
(2)

Student
$$(Q; \mu, \sigma, N) = \frac{\Gamma\left(\frac{N+1}{2}\right)}{\sigma\sqrt{N\pi}\Gamma\left(\frac{N}{2}\right)} \left[1 + \frac{1}{N}\left(\frac{Q-\mu}{\sigma}\right)^2\right]^{-\frac{N+1}{2}}.$$
 (3)

$$\operatorname{Argus}(x; m, z, \rho) = Cx \left(1 - \frac{x^2}{m^2}\right)^{\rho} e^{z \left(1 - \frac{x^2}{m^2}\right)}$$
(4)

Fit 40x $q\bar{q}$ inclusive MC to get PDF_{bkg} parameters. PDF_{bkg} parameters are shared between each energy point. Parameters are set as follow:

- m_x, m_y: cutoff of Argus function, fixed to E_{beam}
- z_x and z_y float in the fit
- ρ_x and ρ_y are fixed to 0.5.
- In the Student function, μ, σ and N is float in the fit.
- Argus function parameters in PDF_{bkg} is fixed when fitting data, while Student function parameters float.

・ロ・・ (四・・ ヨ・・ (日・)

Fitting results $\Lambda_{\rm c}^+ \rightarrow p \pi^0$

Measurements of SCS process $\Lambda_c^+ \to p\pi^0$ and $\Lambda_c^+ \to p\eta$ with double-tag method

9

<ロト < 四ト < 三ト < 三ト

Jiaxiu Teng

Fitting results $\Lambda_c^+ \rightarrow p\eta$

Measurements of SCS process $\Lambda_c^+ \to p\pi^0$ and $\Lambda_c^+ \to p\eta$ with double-tag method

20

<ロト < 四ト < 三ト < 三ト

Systematic Uncertainty

Sources	$\Lambda_{\rm c}^+ \to p \pi^0 (\%)$	$\Lambda_{\rm c}^+ \to p\eta(\%)$
p tracking	1.0	1.0
p PID	1.0	1.0
π^0 reconstruction efficiency, including the photon detection efficiency	0.8	1.0
shower requirements	1.7	0.8
ST yield	0.5	0.5
Intermediate states	0.03(negligible)	0.5
$\Delta \mathrm{E}$ requirement	1.7	1.7
$M(tag\pi^+ signal\bar{p})$ mass window	1.8	5.8
M_{ω} mass window	0.3	-
2D Fitting (signal shape and background shape, fit range)	14.7	1.5
MC statistics	0.1	0.1
Sum	15.1	6.6

Dominant Systematic Uncertainty

ΔE requirement

The systematic uncertainty for ΔE requirement in DT side is studied by ST control sample $\Lambda_c \rightarrow pK^-\pi^+\pi^0$ and $\Lambda_c \rightarrow \Lambda\pi^+\pi^0$. A combined result is 1.7%.

veto DT background: mass window requirement

- Nominal: require $M(p\pi^0) < 1.111 GeV$ or $M(p\pi^0) > 1.121 GeV$ Change mass window: $|M(p\pi^0) - M(\Lambda)| > 4MeV$ or $|M(p\pi^0) - M(\Lambda)| > 6MeV$.
- Nominal: require $M_{\pi^+\pi^-\pi^0} M_{\omega} < 70 MeV$ or $M_{\pi^+\pi^-\pi^0} M_{\omega} > 30 MeV$. Change mass window: $|M_{\pi^+\pi^-\pi^0} - M_{\omega}| > 50 MeV$ or $|M_{\pi^+\pi^-\pi^0} - M_{\omega}| > 90 MeV$.

The larger difference is assigned as the systematic uncertainty. The uncertainty of ω veto is 0.3% for $\Lambda_c^+ \to p\pi^0$. For Λ veto, the uncertainties are 1.8% and 5.8% for $\Lambda_c^+ \to p\pi^0$ and $p\eta$, respectively.

Fitting

The systematic uncertainty from 2D Fitting includes signal shape, background shape and fitting range.

- Signal MC shape: Convolute a Gaussion function with a fixed width. The result is 3.1% for $\Lambda_c^+ \to p\pi^0$ and 0.4% for $\Lambda_c^+ \to p\eta$.
- Background shape: change background PDF parameter in 1σ deviation. The result is 9.3% for $\Lambda_c^+ \to p\pi^0$ and 1.4% for $\Lambda_c^+ \to p\eta$.
- Fitting range: change the fitting range. Nominal: M_{BC}^{ST} range [2.2, 2.35] GeV/ c^2 and $M_{BC}^{p_2\gamma}$ range [2.2, 2.35] GeV/ c^2 . The range is changed to be [2.25, 2.35] GeV/ c^2 . The result is 11% for $\Lambda_c^+ \to p\pi^0$ and negligible for $\Lambda_c^+ \to p\eta$.

Thus, the combined result for fitting systematic uncertainty is 14.7% for $\Lambda_c^+ \rightarrow p\pi^0$ and 1.5% for $\Lambda_c^+ \rightarrow p\eta$.

・ロント (四)とく ほどう (日)

Result

• \mathcal{B} is determined by:

$$\mathcal{B} = \frac{N_{\rm obs}}{\sum_i \left(N_i^{\rm single-tag} / \epsilon_i^{\rm single-tag}\right) \cdot \epsilon_i^{\rm double-tag}},$$

- $N_{\rm obs}$: number of observed events for the signal process
- $N_i^{\text{single-tag}}$ denotes the number of events of each single-tag channel of Λ_c^+ decays
- $\epsilon_i^{\text{single-tag}}$ and $\epsilon_i^{\text{double-tag}}$: ST and DT efficiencies

Preliminary result:

$$\begin{split} \mathcal{B}(\Lambda_{\rm c}^+ \to p\pi^0) &: (1.73 \pm 0.67 \pm 0.26) \times 10^{-4}, 4.9\sigma \\ \mathcal{B}(\Lambda_{\rm c}^+ \to p\eta) &: (1.77 \pm 0.33 \pm 0.12) \times 10^{-3}, 11.2\sigma. \end{split}$$

The results of this work and measurments from other works are summarized as follow:

Decay modes	$\Lambda_{\rm c}^+ \to p \pi^0$	$\Lambda_{\rm c}^+ \to p\eta$
$\mathcal{B}($ this analysis $)$	$(1.73 \pm 0.67 \pm 0.26) \times 10^{-4}$	$(1.77 \pm 0.33 \pm 0.12) \times 10^{-3}$
$\mathcal{B}(\text{BESIII} \text{ previous result})$	$< 2.7 \times 10^{-4}$ @90%C.L.	$(1.24 \pm 0.28 \pm 0.10) \times 10^{-3}$
$\mathcal{B}(\text{BESIII ST method})$	-	$(1.56 \pm 0.11 \pm 0.04) \times 10^{-3}$
$\mathcal{B}(Belle result)$	$< 8 \times 10^{-5}$ @90%C.L.	$(1.42 \pm 0.05 \pm 0.11) \times 10^{-3}$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Summary and next to do

- \mathcal{B} of SCS process $\Lambda_c^+ \to p\pi^0$ and $\Lambda_c^+ \to p\eta$ have been measured with double-tag method, and the result is: $\mathcal{B}(\Lambda_c^+ \to p\pi^0) : (1.73 \pm 0.67 \pm 0.26) \times 10^{-4}$ with 4.9σ $\mathcal{B}(\Lambda_c^+ \to p\eta) : (1.77 \pm 0.33 \pm 0.12) \times 10^{-3}$ with 11.2σ . The result is consistent with various phenomenological models' predictions.
- Memo has been prepared
- Next to do:
 - Check datasets at $E_{cms} > 4.7 \text{GeV}$
 - Check $\Lambda_c^+ \bar{\Lambda}_c^-$ backgrounds
 - More validation of background PDF
 - Upper limit