Br($J/\psi \rightarrow \Lambda\overline{\Lambda}$) measurement at two energy points 20211208

- ➢ Signal region: 3.05GeV~3.15GeV.
- Sidebands: 3.00GeV~3.05GeV and 3.15GeV~3.20GeV.
- Signal events obtained by counting the events in the signal region and subtract the events in sidebands:

$$N_{sig} = (N_{obs} - N_{bkg})_{sigreg} - (N_{obs} - N_{bkg})_{sidebands}$$

Data distribution near J/ψ with main background

➢ Signal extract at 3770:

$(M_{\Lambda\bar{\Lambda}})$ corr	N _{obs}	$N_{\pi^0\Lambda\overline{\Lambda}}$	$N_{\Lambda\Sigma}$	$N_{non-\Lambda\overline{\Lambda}}$	N _{sig}
Signal region	134.00 ± 11.58	2.30 ± 0.62	0.09 ± 0.01	3.22 ± 1.80	128.39 ± 11.74
Sideband1	6.00 ± 2.45	0.48 ± 0.24	0.06 ± 0.01	-0.02 ± 0.00	5.48 ± 2.46
Sideband2	3.00 ± 1.73	0.70 ± 0.32	0.04 ± 0.00	-0.01 ± 0.00	2.27 ± 1.76

$$\succ N_{sig}(3770) = 120.64 \pm 12.12$$

➢ Signal extract at 4180:

$(M_{\Lambda\overline{\Lambda}})$ corr	N _{obs}	$N_{\pi^0\Lambda\overline{\Lambda}}$	$N_{\Lambda\Sigma}$	$N_{non-\Lambda\overline{\Lambda}}$	N _{sig}
Signal region	89.00 ± 9.43	0.24 ± 0.35	0.10 ± 0.01	0.48 ± 0.71	88.18 ± 9.46
Sideband1	2.00 ± 1.41	0.06 ± 0.15	0.05 ± 0.00	0.47 ± 0.71	1.42 ± 1.58
Sideband2	1.00 ± 1.00	-0.06 ± 0.09	0.03 ± 0.00	-0.01 ± 0.00	1.04 ± 1.00

$$\succ N_{sig}(4180) = 85.72 \pm 9.64$$

Fit to obtain the signal yields

→ MC of $e^+e^- \rightarrow \gamma J/\psi \rightarrow \gamma \Lambda \overline{\Lambda}$ generated to estimate the detection efficiency

Angular distribution of Λ described by: $1 + \alpha \cos \theta_{\Lambda}$, with input $\alpha = 0.469$.

> Cross section measurement of $e^+e^- \rightarrow \gamma J/\psi \rightarrow \gamma \Lambda \overline{\Lambda}$

$\sqrt{s}(\text{GeV})$	$N_{sig}(J/\psi)$	3	$\mathcal{L}(\mathbf{fb}^{-1})$	$\sigma(\mathbf{fb})$
3.773	120.64 ± 12.12	0.070 ± 0.001	2.932	1439.55 ± 146.08
4.178	85.72 ± 9.64	0.070 ± 0.001	3.189	940.43 ± 106.61

≻Branching ratio extracted by formula:

$$\sigma(s) = \frac{12\pi^2 \Gamma(V \to e^+ e^-) \mathcal{B}(V \to f)}{m_V s} W(s, x_0)$$

- $\Gamma(V \to e^+e^-)$: electronic width of the vector meson V.
- m_V : mass of the vector meson V.
- $x_0 = 1 m_V^2 / s$
- $\mathcal{B}(V \to f)$: branching ratio of V to final state f.
- $W(s, x_0)$: probability function for ISR photon emission.

$\sqrt{s}(\text{GeV})$	$\sigma(\mathbf{fb})$	$W(s, x_0)$	$\Gamma(J/\psi \rightarrow e^+e^-)\mathcal{B}(J/\psi \rightarrow f)(eV)$
3.773	1439.55 ± 146.08	0.171	8.06 ± 0.82
4.178	940.43 ± 106.61	0.115	9.60 ± 1.09

> Branching ration measurement of $J/\psi \to \Lambda \overline{\Lambda}$:

- ▶ With $m_{I/\psi} = (3.096900 \pm 0.000006) GeV$, from PDG.
- $\Gamma = (92.6 \pm 1.7) \text{keV}, \mathcal{B}(J/\psi \to e^+e^-) = (5.971 \pm 0.032)\%, \Gamma(J/\psi \to e^+e^-) = \Gamma \times \mathcal{B}(J/\psi \to e^+e^-) = (5.529 \pm 0.106) \text{keV}, \text{ from PDG}.$
- ► $\mathcal{B}(J/\psi \to \Lambda \overline{\Lambda})$ is calculated as $(1.46 \pm 0.15) \times 10^{-3}$ and $(1.74 \pm 0.20) \times 10^{-3}$ at 3770 and 4180, respectively.
- > Combine: $(1.56 \pm 0.12) \times 10^{-3}$
- > PDG: $(1.89 \pm 0.09) \times 10^{-3}$

Another formula used to extract the branching ratio: $\mathcal{B}(J/\psi \to \Lambda \overline{\Lambda}) \times \Gamma(J/\psi \to e^+e^-) = \frac{N_{sig}(J/\psi \to \Lambda \overline{\Lambda}) \times m_{J/\psi}^2}{6\pi^2 \times d\mathcal{L}/dM \times \varepsilon \times Br^2(\Lambda \to p\pi) \times C}$

- ≻Using this formula, with $N_{sig}(J/\psi \to \Lambda \overline{\Lambda})$ and ε got before, $m_{J/\psi}$ and $\Gamma(J/\psi \to e^+e^-)$ and $Br(\Lambda \to p\pi)$ from PDG, $d\mathcal{L}/dM = 0.2199 \text{ nb}^{-1}/\text{MeV}$ and $0.1312 \text{ nb}^{-1}/\text{MeV}$ at 3.773 GeV and 4.178 GeV respectively, we calculate the $\mathcal{B}(J/\psi \to \Lambda \overline{\Lambda})$ once again.
- > $\mathcal{B}(J/\psi \rightarrow \Lambda \overline{\Lambda})$ is calculated as (1.45 ± 0.15) × 10⁻³ and (1.72 ± 0.20) × 10⁻³ at 3770 and 4180, respectively.

≻Combine: $(1.55 \pm 0.12) \times 10^{-3}$

≻PDG $(1.89 \pm 0.09) \times 10^{-3}$