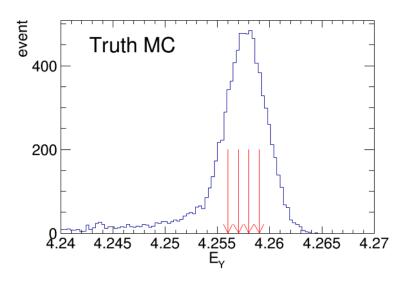
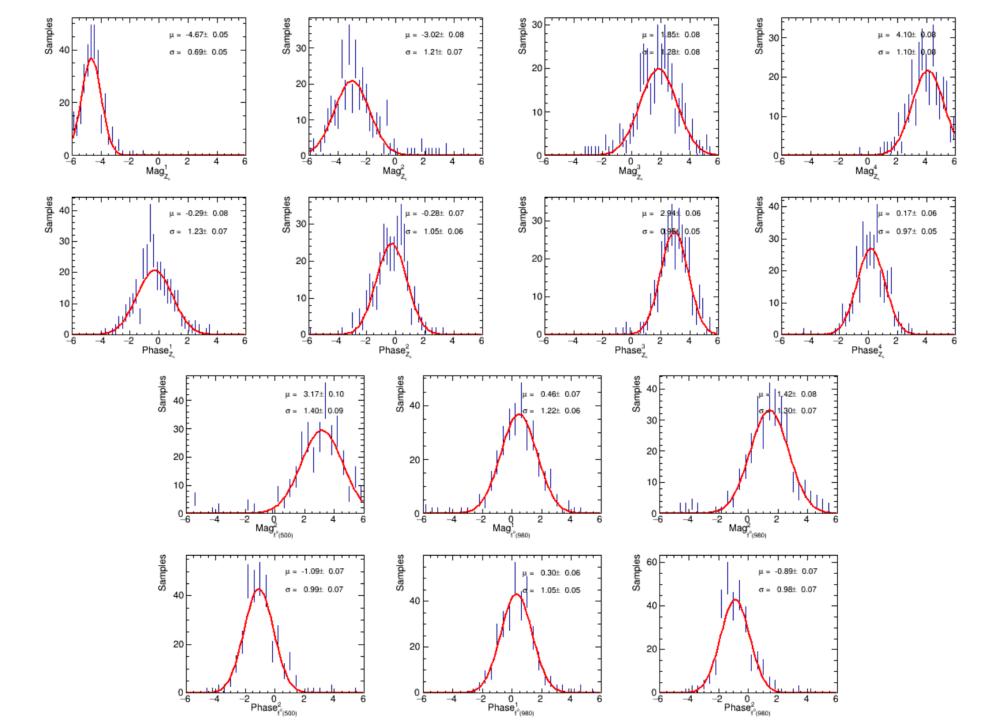

[4.256,4.257] [4.257,4.258] [4.258,4.259]

 $\mu = 0.22 \pm 0.07$ $\mu = 0.23\pm 0.06$ Ey \in [4.256,4.257] $\sigma = 1.05 \pm 0.06$ $\sigma = 1.13 \pm 0.06$ $\sigma = 1.07 \pm 0.07$ $\sigma = 0.93 \pm 0.05$ μ = -0.37± 0.06 $\mu = 0.12 \pm 0.07$ $\mu = -0.29 \pm 0.07$ ı = -0.24± 0.07 $\sigma = 1.03 \pm 0.08$ $\sigma = 1.20 \pm 0.08$ $\sigma = 0.96 \pm 0.05$ = 1.09± 0.08 0 Phase¹_{Z_z} 0 Phase²_{Z_c} O Phase_{Z_c} 0 Phase_z $\mu = -0.47 \pm 0.06$ $\mu = 0.08 \pm 0.08$ $\mu = 0.28 \pm 0.07$ $\sigma = 0.97 \pm 0.06$ $\sigma = 0.96 \pm 0.07$ $\sigma = 1.05 \pm 0.06$ 20 20 -4 -2 0 Mag² -2 0 Mag² $\mu = -0.23 \pm 0.07$ $\mu = -0.48 \pm 0.09$ $\mu = -0.17 \pm 0.07$ $\sigma = 1.12 \pm 0.07$ $\sigma = 1.36 \pm 0.08$ $\sigma = 1.06 \pm 0.06$ 20 -2 0 Phase²_{f°(500)} -2 0 Phase¹₍₉₈₀₎ -2 0 Phase²_{f°(980)}

Ey ∈ [4.257,4.258]

Samples 00 Ey \in [4.258,4.259] Sample 05 9amble 40 $\mu = 0.04 \pm 0.06$ μ = 0.23± 0.06 $\mu = 0.13 \pm 0.08$ $\mu = 0.23 \pm 0.07$ $\sigma = 1.02 \pm 0.05$ $\sigma = 0.98 \pm 0.05$ 1.00± 0.05 $\sigma = 1.05 \pm 0.07$ 20 20 10 10 0 Mag_z 0 Mag¹_{Z_c} 0 Mag²_{Z_c} 0 Mag³_{Z_z} -4 -4 -2 Samples 00 Samples 04 Sample 30 $\mu = -0.37 \pm 0.06$ $\mu = 0.00 \pm 0.06$ $\mu = -0.24 \pm 0.06$ $\sigma = 1.03 \pm 0.05$ $\sigma = 0.91\pm 0.05$ $\sigma = 0.86 \pm 0.06$ $\sigma = 1.02 \pm 0.06$ 20 20 -4 -2 0 Phase³_z -2 0 Phase²_Z 0 Phase_z 0 Phase¹_Z -4 -4 Samples 9 Samples 99 $\mu=~0.07\pm~0.07$ $\sigma = 0.89 \pm 0.07$ $\sigma = 0.82 \pm 0.05$ $\sigma = ~1.04 \pm ~0.07$ 20 20 20 $\mu = -0.10 \pm 0.07$ $\mu = -0.10 \pm 0.07$ $\mu = -0.12 \pm 0.06$ s = 1.06± 0.06 $\sigma = 1.03 \pm 0.05$ $\sigma = 0.96 \pm 0.04$ 20 20


-2 0 Phase²_{f°(500)} -2 0 Phase¹_{f°(980)}


-2 0 Phase² f⁰(980)

$$\sigma_{MC} = \frac{1}{N_{MC}} \sum_{i=1}^{N_{MC}} \left(\frac{d\sigma}{d\Phi_n} \right)_i$$

$$\mathcal{L}(\xi_1, \xi_2, \dots) = \prod_{i}^{N} P(\xi_i) = \prod_{i}^{N} \frac{\omega(\xi_i) \varepsilon(\xi_i)}{\sigma_{MC}}.$$

- The phsp of different Ey range is differnet
- The corresponding σ_{MC} is differnet

