Study of $e^+e^- ightarrow ~{\it K}^0_S {\it K}^{\pm} \pi^{\mp}$

Weimin Liu

University of Science and Technology of China

July 19, 2021

メロト メタト メヨト メヨト

Content

- Motivation
- Data Sets
- Event Selection
- Background Study
- Signal Yeilds
- Summary and Next to do

イロト イヨト イヨト イヨ

Motivation

• Cross section of $e^+e^- \rightarrow KK\pi$ such as $K^+K^-\pi^0$, $K_S^0K^{\pm}\pi^{\mp}$ and $\phi\pi^0$ are measured by Babar through ISR return method.

Figure: Measurement of $e^+e^- \rightarrow KK\pi$ from Babar Phys. Rev. D 77, 092002

Weimin Liu (USTC)

Study of $e^+e^- \rightarrow \kappa_c^0 K^{\pm} \pi^{\mp}$

< □ > < □ > < □ > < □ > < □ >

Motivation

- Babar use Dalitz analysis method to study K⁰_SK[±]π[∓] and K⁺K[−]π⁰ channel at c.m. energies below 3.1 GeV.
- The main contribution of intermediate states comes from $\textit{KK}^*(892)$ and $\textit{KK}^*_2(1430)$
- Difference between $K^0_S K^{\pm} \pi^{\mp}$ and $K^+ K^- \pi^0$ channel
 - The final state ${\it K}^+{\it K}^-\pi^0$ can be produced through ${\it K}^{*\pm}(892){\it K}^\mp$ and ${\it K}_2^{*\pm}(1430){\it K}^\mp$
 - The final state $K^0_S K^{\pm} \pi^{\mp}$ can be produced through both charged $K^{*\pm} K$ and neutral $K^{*0} K^0_S$
- KK* mode have isospin 0 and 1, K⁰_SK[±]π[∓] final state have charged and neutral channel. We can separately extract the isoscale and isovector components.

< □ > < □ > < □ > < □ > < □ >

• From Babar's Dalitz plot analysis of $e^+e^- \rightarrow K^*(892)K$

Figure: Isoscalar and isovector components of the cross section for the process $e^+e^- \rightarrow K^*(892)K$ from Babar

イロト イヨト イヨト

Motivation

- Resonance around 2 GeV: $\rho(2000), \ \rho(2150), \ \phi(2170)$
- The production of ρ^* is higher, even $\rho^* \to K^* K$ is suppressed by OZI rule.

Figure: Isoscalar and isovector components of the cross section for the process $e^+e^- \rightarrow K^*(892)K$ from Babar

• $e^+e^-(1^{--})$ experiment(direct production) is cleaner.

A D F A A F F A

Data Sets

- Boss version: 665p01
- Data: 2015 R scan data

E _{cms}	$\mathcal{L}(\textit{pb}^{-1})$	run number
2.0000	10.1 ± 0.1	$41729 \sim 41909$
2.0500	3.34 ± 0.03	$41911 \sim 41958$
2.1000	12.2 ± 0.1	$41588 \sim 41727$
2.1250	108 ± 1	$42004 \sim 43253$
2.1500	2.84 ± 0.02	$41533 \sim 41579$
2.1750	10.6 ± 0.1	$41416 \sim 41532$
2.2000	13.7 ± 0.1	$40989 \sim 41121$
2.2324	11.9 ± 0.1	$41122 \sim 41239$
2.3094	21.1 ± 0.1	$41240 \sim 41411$
2.3864	22.5 ± 0.2	$40806 \sim 40951$
2.6444	33.7 ± 0.2	$40128 \sim 40296$
2.6464	34.0 ± 0.3	$40300 \sim 40435$

イロト イ団ト イヨト イヨト

Data Sets

• Signal MC: 10M PHSP MC without ISR generated by BesEvtGen

Process	Generator	
$e^+e^- ightarrow K^0_{\cal S} {\it K}^\pm \pi^\mp$	PHSP	
$K_S^0 \rightarrow \pi^+\pi^-$	PHSP	

• Inclusive MC: 4.95M $q\bar{q}$ MC at 2.125 GeV

• • • • • • • • • •

• Signal:
$$e^+e^- \rightarrow K^0_S K^{\pm}\pi^{\mp} \rightarrow (\pi^+\pi^-) K^{\pm}\pi^{\mp}$$

Charged Tracks

- $N_{charged} = 4$
- $N_+ = N_-, Q_{total} = 0$
- 4 charged tracks are considered as pions.

K_S^0 reconstruction

• Loop all charged tracks. Select smallest χ^2 combination of $\pi^+\pi^-$ as the K^0_S candidate.

• $L/\delta L > 2$

Charged Selection

• $|\cos \theta| < 0.93$

•
$$V_{xy} < 1 \text{ cm}, V_z < 10 \text{ cm}$$

Study of $e^+e^- \rightarrow \kappa_c^0 K^{\pm} \pi^{\mp}$

PID For Left 2 Charged Tracks

- $\pi : p(\pi) > p(K)$
- $K: p(K) > p(\pi)$

•
$$N_{\pi} = N_{\kappa} = 1$$

Vertex Fit

- Vertex fit for $K^{\pm}\pi^{\mp}$
- Second vertex fit for K_S^0

<ロ> <四> <四> <四> <三</p>

Kinematic Fit

• 4C for
$$K_S^0 K^{\pm} \pi^{\mp}$$

• K_S^0 candidates

• K_S^0 resolution

< □ > < □ > < □ > < □ > < □ >

• χ^2 distribution of kinematic fit

メロト メロト メヨト メ

• Momentum distribution at 2.125 GeV

Study of $e^+e^- \rightarrow K_c^0 K^{\pm} \pi^{\mp}$

• Mass distribution and Dalitz plot at 2.125 GeV

Background Study

• Inclusive MC sample after event selection

nEtr	nCEtr
5625	5625
5583	11208
1387	12595
1358	13953
717	14670
687	15357
6	15363
4	15367
	nEtr 5625 5583 1387 1358 717 687 6 4

- Signal: MC shape ⊗ Gaussian function
- Background: 1st order polynomial

→ Ξ →

Ks at other energy points

• Ks at other energy points

Weimin Liu (USTC)

Study of $e^+e^- \rightarrow K_c^0 K^{\pm} \pi^{\mp}$

Events at other energy points

E _{cms} GeV	${\cal L}$ pb $^{-1}$	N _{signal}	N _{bkg}	N_{bkg}/N_{signal}
2.0000	10.1 ± 0.1	921.5 ± 30.9	3.5 ± 3.3	0.37%
2.0500	3.34 ± 0.03	349.1 ± 19.1	3.9 ± 3.4	1.12%
2.1000	12.2 ± 0.1	1263.8 ± 37.4	17.2 ± 12.2	1.36%
2.1500	2.84 ± 0.02	232.0 ± 15.2	6.0 ± 3.2	2.59%
2.1750	10.6 ± 0.1	959.8 ± 31.9	7.3 ± 3.5	0.76%
2.2000	13.7 ± 0.1	1026.9 ± 60.5	2.3 ± 1.1	0.22%
2.2324	11.9 ± 0.1	892.0 ± 30.7	8.0 ± 5.3	0.89%
2.3094	21.1 ± 0.1	1399.3 ± 37.8	3.5 ± 2.1	0.25%
2.3864	22.5 ± 0.2	1184.7 ± 35.7	17.3 ± 10.2	1.46%
2.3960	66.9 ± 0.5	3403.9 ± 58.9	15.9 ± 9.4	0.04%
2.6444	33.7 ± 0.2	992.5 ± 32.6	13.2 ± 10.1	1.33%
2.6464	34.0 ± 0.3	897.5 ± 30.6	12.1 ± 10.5	1.35%

メロト メタト メヨト メヨ

2.0 GeV

• Mass distribution and Dalitz plot at 2.0 GeV

Study of $e^+e^- \rightarrow K_c^0 K^{\pm} \pi^{\mp}$

2.05 GeV

• Mass distribution and Dalitz plot at 2.05 GeV

Study of $e^+e^- \rightarrow \kappa^0_{\xi}\kappa^{\pm}\pi^{\mp}$

2.1 GeV

• Mass distribution and Dalitz plot at 2.1 GeV

Study of $e^+e^- \rightarrow K_c^0 K^{\pm} \pi^{\mp}$

2.15 GeV

• Mass distribution and Dalitz plot at 2.15 GeV

Study of $e^+e^- \rightarrow \kappa^0_{\xi}\kappa^{\pm}\pi^{\mp}$

2.175 GeV

• Mass distribution and Dalitz plot at 2.175 GeV

Study of $e^+e^- \rightarrow K_c^0 K^{\pm} \pi^{\mp}$

2.2 GeV

• Mass distribution and Dalitz plot at 2.2 GeV

Study of $e^+e^- \rightarrow \kappa_{S}^{0}\kappa^{\pm}\pi^{\mp}$

2.2324 GeV

• Mass distribution and Dalitz plot at 2.2324 GeV

Study of $e^+e^- \rightarrow K^0_S K^{\pm} \pi^{\mp}$

2.3094 GeV

• Mass distribution and Dalitz plot at 2.3094 GeV

Study of $e^+e^- \rightarrow K^0_S K^{\pm} \pi^{\mp}$

2.3864 GeV

• Mass distribution and Dalitz plot at 2.3864 GeV

Study of $e^+e^- \rightarrow K^0_S K^{\pm} \pi^{\mp}$

2.396 GeV

• Mass distribution and Dalitz plot at 2.396 GeV

Study of $e^+e^- \rightarrow K^0_S K^{\pm} \pi^{\mp}$

2.6444 GeV

• Mass distribution and Dalitz plot at 2.6444 GeV

• Mass distribution and Dalitz plot at 2.6464 GeV

Study of $e^+e^- \rightarrow K_c^0 K^{\pm} \pi^{\mp}$

Summary and Next To Do

Summary

- Event selection has been finished.
- K_S^0 and $K^*(892)$ signal are observed.

Next to do

• Prepare for PWA

イロト イ団ト イヨト イヨ

Back Up

• Signal MC: $N_{Charged}$ distribution ($N_{Charged} > 3$)

Study of $e^+e^- \rightarrow K_c^0 K^{\pm} \pi^{\mp}$

イロト イヨト イヨト イヨ

PWA

- Amplitude: covariant tensor formalism
- For the channel $e^+e^- \rightarrow K^0_S K^{\pm} \pi^{\mp}$, numbering $K^0_S, K^{\pm}, \pi^{\mp}$ as particle 1, 2, 3. Possible partial-wave amplitudes are following:
 - For ${\it e^+e^-}\to \rho^\pm\pi^\mp\to ({\it K}^0_5{\it K}^\pm)\pi^\mp$, i.e. ${\it e^+e^-}\to (12)3$

$$\rho(1450)^{\pm}\pi^{\mp}: U^{\mu}_{\rho^{\pm}} = \epsilon_{\mu\nu\lambda\sigma} \rho^{\sigma}_{(K^{0}_{S}K^{\pm}\pi^{\mp})} \tilde{T}^{(1)\nu}_{\rho^{\pm}3} \cdot f^{\rho^{\pm}}_{12} \cdot \tilde{T}^{(1)\lambda}_{12}$$
(1)

$$a_{2}(1320)^{\pm}\pi^{\mp}: U^{\mu}_{a_{2}^{\pm}} = \epsilon_{\mu\nu\lambda\sigma} p^{\sigma}_{(K^{0}_{S}K^{\pm}\pi^{\mp})} \tilde{T}^{(2)\nu\alpha}_{a_{2}^{\pm}3} \cdot f^{a_{2}^{\pm}}_{12} \cdot \tilde{T}^{(2)\lambda}_{12,\alpha}$$
(2)

• For
$$e^+e^- \to K^{*\pm}K^{\mp} \to (K_S^0\pi^{\pm})K^{\mp}$$
, i.e. $e^+e^- \to (13)2^{\pm}$

$$K^{*}(892)^{\pm}K^{\mp}: U^{\mu}_{K_{1}^{*\pm}} = \epsilon_{\mu\nu\lambda\sigma} p^{\sigma}_{(K_{S}^{0}K^{\pm}\pi^{\mp})} \tilde{T}^{(1)\nu}_{K^{*\pm}2} \cdot f^{K_{1}^{*\pm}}_{13} \cdot \tilde{T}^{(1)\lambda}_{13}$$
(3)

$$\mathcal{K}_{2}^{*}(1430)^{\pm}\mathcal{K}^{\mp}: \mathcal{U}_{\mathcal{K}_{2}^{*\pm}}^{\mu} = \epsilon_{\mu\nu\lambda\sigma} \mathcal{P}_{(\mathcal{K}_{2}^{\circ}\mathcal{K}^{\pm}\pi^{\mp})}^{\sigma} \tilde{\mathcal{T}}_{\mathcal{K}_{2}^{*\pm}2}^{(2)\nu\alpha} \cdot \mathcal{I}_{13}^{\mathcal{K}_{2}^{*\pm}} \cdot \tilde{\mathcal{T}}_{13,\alpha}^{(2)\lambda}$$
(4)

33 / 36

PWA

• For
$$e^+e^- \to K^{*0}K^0_S \to (K^{\pm}\pi^{\mp})K^0_S$$
, i.e. $e^+e^- \to (23)1$
 $K^*(892)^0K^0_S : U^{\mu}_{K_1^{*0}} = \epsilon_{\mu\nu\lambda\sigma}p^{\sigma}_{(K^0_SK^{\pm}\pi^{\mp})}\tilde{T}^{(1)\nu}_{K_1^{*0}1} \cdot t^{K_1^{*0}}_{23} \cdot \tilde{T}^{(1)\lambda}_{23}$ (5)
 $K^*_2(1430)^0K^0_S : U^{\mu}_{K_2^{*0}} = \epsilon_{\mu\nu\lambda\sigma}p^{\sigma}_{(K^0_SK^{\pm}\pi^{\mp})}\tilde{T}^{(2)\nu\alpha}_{K_2^{*0}1} \cdot t^{K_2^{*0}}_{23} \cdot \tilde{T}^{(2)\lambda}_{23,\alpha}$ (6)

- Resonance description
 - Mass-dependent relativistic Breit-Wigner function:

$$BW(s) = \frac{1}{s - M_R^2 + i\sqrt{s}\Gamma_R(s)}$$
(7)

$$\Gamma_{R}(s) = \Gamma_{R}^{0}(\frac{M_{R}^{2}}{s})(\frac{p(s)}{p(M_{R}^{2})})^{2l+1}$$
(8)

< □ > < □ > < □ > < □ > < □ >

• First attempt

Resonance	JP	$Mass(GeV/c^2)$	Width(GeV)	Significance
$\rho(1450)^{\pm}$	1-	1.465 ± 0.025	0.400 ± 0.060	5.6σ
$a_2(1320)^{\pm}$	2^{+}	1.316 ± 0.009	0.107 ± 0.005	26.79σ
$K^{*}(892)^{\pm}$	1-	0.891 ± 0.002	0.050 ± 0.001	7.31σ
$K_{2}^{*}(1430)^{\pm}$	2^{+}	1.427 ± 0.001	0.100 ± 0.002	$>$ 50 σ
$K^{*}(892)^{0}$	1-	0.896 ± 0.001	0.047 ± 0.001	$>$ 50 σ
$K_2^*(1430)^0$	2^{+}	1.432 ± 0.001	0.109 ± 0.005	22.56σ

メロト メタト メヨト メヨト

• Mass distribution and angular distribution plot

• • • • • • • • • • • •