@4600MeV L = 500Pb⁻¹

 $\Lambda_{c}^{+} \rightarrow p K_{s}^{0}(\pi^{+}\pi^{-})$

Motivation(I)

Measurement of the decay asymmetries α in the processes $\Lambda_c^+ \to \mathcal{B}(\frac{1}{2}^+) + P$ is useful to discriminate different models [7, 8]. Up to now, only the asymmetries of $\Lambda_c^+ \to \Lambda \pi^+$ and $\Lambda_c^+ \to \Sigma^+ \pi^0$ are measured. A data set of at least 500 pb⁻¹ is potential to make first measurements of other modes, such as $\alpha(\Lambda_c^+ \to pK_s)$ and $\alpha(\Lambda_c^+ \to \Sigma^0 \pi^+)$.

Proposal of Studying the Charmed Baryon Lambda_c at BESIII

Motivation(II)

•(Theory)(How to extract the asymmetry parameters).

Event selection

- Good charged tracks: $|\cos\theta| < 0.93$; nGood>3
- PID (dE/dx and TOF): p⁺; π^{\pm}
- K_s^{0} reconstruction: Second Vertex fit Method $(\pi^+ \pi^-)$
- Λ_c^+ Reconstruction: M(p⁺ K_s⁰); Minimum |M(p⁺ K_s⁰)-M(Λ_c^+)|;

ΔE and M_BC

- (1) $\Delta E = E(\Lambda_c^+) E_beam$
- (2) M_BC = sqrt[E_beam² P(Λ_c^+)²]

Momentum distributions

(1)Some angular distributions will be fitted to extract the asymmetry parameters.

(2) Event selection criteria need to optimized.(???)

Check?

Liu PeiLian

Song WeiMin

Our work

L = 54.5Pb-1L = 110 Pb-1L = 500 Pb-1N = 563N = 623

 $N_{total} = 5630$

 $N_{total} = \frac{2831}{2}$

 $N_{total} = 2911$

$Br(\Lambda_c^+ \rightarrow p \ K^-\pi^+)$

If we missing a particle (p or K or pi): to increase N_s ??

Form factors in $\Lambda_c^+ \rightarrow p \ K^-\pi^+$

- PRL 94,191801,(2005) : <u>Λ_c⁺ → Λ e⁺ ν_e</u>
 (1)Form factor ratio
 (2)Pole mass
 (3)Decay asymmetry parameter of Λ_c⁺
 (4)CP violation

 [Semileptonic decay]
- How about $(\Lambda_c^+ \rightarrow p \ K^-\pi^+)$??? N = 2900 (intermediate states)(not Good!)
- How about $(\Lambda_{\underline{c}}^+ \rightarrow \Lambda \mu^+ \nu_{\mu})$??? N = 1200