Latest Progress on LUARLW generator

2 3	Weiping Wang ^{1a} , Zhen Gao ¹ , Bingxin Zhang ² , Lipeng Zhou ² , Ronggang Ping ² , Wenbiao Yan ¹ , Haiming Hu ² , Guangshun Huang ¹ , Zhengguo Zhao ¹						
4	¹ University of Science and Technology of China, Anhui, China						
5	² Institute of High Energy Physics, CAS, Beijing, China						
6	(Dated: July 24, 2019)						

1

^a Email: cloud13@mail.ustc.edu.cn

7 CONTENTS

8	I. The input hadronic cross section	3
9	II. Comparing of resulted ISR factors	4

10 I. THE INPUT HADRONIC CROSS SECTION

FIG. 1. The update of R values at low energies.

FIG. 2. The input hadronic cross sections.

11 II. COMPARING OF RESULTED ISR FACTORS

¹² The radiator function of Kureav-Fadin scheme:

$$F_{\rm SF}^{\rm KF}(x,s) = \beta x^{\beta-1} \left[1 + \frac{\alpha}{\pi} \left(\frac{\pi^2}{3} - \frac{1}{2} \right) + \frac{3}{4} \beta - \frac{\beta^2}{24} \left(\frac{1}{3} L + 2\pi^2 - \frac{37}{4} \right) \right] \\ -\beta (1 - \frac{1}{2}x) - \frac{1}{8} \beta^2 \left[4(2 - x) \ln x + \frac{1 + 3(1 - x)^2}{x} \ln(1 - x) + 6 - x \right]. \tag{1}$$

¹³ The J. M. Wu's scheme:

$$F_{\rm SF}^{\rm WU}(x,s) = \beta x^{\beta-1} \left[1 + \frac{3}{4}\beta - \frac{\beta^2}{24} \left(\frac{1}{3}L + 2\pi^2 - \frac{37}{4} \right) \right] \cdot \left[1 + \frac{\alpha}{\pi} \left(\frac{\pi^2}{3} - \frac{1}{2} \right) \right] - x^{\beta} (\beta + \frac{\beta^2}{4}) + x^{\beta+1} \left(\frac{\beta}{2} - \frac{3}{8}\beta^2 \right) + O(x^{\beta+2}\beta^2).$$
(2)

¹⁴ The Nicrosini-Luca scheme:

Where the $L = \ln(s/m_e^2)$.

15

$$F_{\rm SF}^{\rm NL}(x,s) = \beta \Delta x^{\beta-1} - \beta (1 - \frac{1}{2}x) - \frac{1}{8}\beta^2 \Big[4(2-x)\ln x + \frac{1+3(1-x)^2}{x}\ln(1-x) + 6 - x \Big],$$

$$\Delta = 1 + \frac{\alpha}{\pi} \Big(\frac{3}{2}L + \frac{\pi^2}{3} - 2 \Big) + \Big(\frac{\alpha}{\pi} \Big)^2 \Big\{ \Big[\frac{9}{8} - 2\zeta(2) \Big] L^2 + \Big[-\frac{45}{16} + \frac{11}{2}\zeta(2) + 3\zeta(3) \Big] L - \frac{6}{5} \big[\zeta(2) \big]^2 - \frac{9}{2}\zeta(3) - 6\zeta(2)\ln 2 + \frac{3}{8}\zeta(2) + \frac{57}{12} \Big\}.$$
(3)

$$10$$

$$-$$
Kuraev & Fadin

$$-$$
Nicrosini & Luca

$$-$$

$$J. M. Wu$$

$$-$$

$$\beta x^{\beta-1}(1-x+0.5x^2)$$

$$0$$

$$0.5$$

$$1$$
X

FIG. 3. The radiator function of different schemes.

¹⁶ To obtain the total cross section:

$$\sigma_{\rm had}^{\rm tot}(s) = \int_0^{x_m} dx F_{\rm SF}(x,s) \frac{\sigma_{\rm had}^0(s')}{|1 - \Pi(s')|^2}.$$
 (4)

17 This leads to

$$1 + \delta(s) = \frac{\sigma_{\text{had}}^{\text{tot}}(s)}{\sigma_{\text{had}}^{0}(s)}.$$
(5)

	Nominal	KF scheme		WU scheme	
\sqrt{s} (GeV)	$1 + \delta$	$1 + \delta$	Δ_{rel} (%)	$1 + \delta$	Δ_{rel} (%)
2.2324	1.2217	1.2196	0.17	1.2228	-0.09
2.4000	1.2282	1.2259	0.18	1.2298	-0.13
2.8000	1.2392	1.2367	0.20	1.2420	-0.23
3.0500	1.2106	1.2072	0.28	1.2141	-0.30
3.0600	1.2004	1.1968	0.29	1.2040	-0.30
3.0800	1.1427	1.1385	0.37	1.1464	-0.32
3.4000	1.4435	1.4300	0.94	1.4481	-0.32
3.5000	1.4022	1.3909	0.80	1.4069	-0.34
3.5424	1.3887	1.3781	0.76	1.3936	-0.35
3.5538	1.3847	1.3742	0.75	1.3896	-0.35
3.5611	1.3826	1.3722	0.75	1.3875	-0.36
3.6002	1.3709	1.3610	0.72	1.3759	-0.36
3.6500	1.3442	1.3349	0.69	1.3492	-0.38
3.6710	1.2880	1.2798	0.63	1.2928	-0.37

TABLE I. The calculated ISR correction factors with different schemes.