Study of lepton flavor violation in the decay τ→lll

Thanh Dong

Fudan Univ.

Physics Motivation

- In quark sector: flavor mixing is well established.
- <u>Neutrino mixing:</u> => lepton flavor symmetry is violated

=> How about charged lepton sector??

SM + neutrino mixing (in the SM):

⇒ It is very small, if we find a signal -> new physics

Physics motivation

Many extensions of the SM naturally introduces LFV at order ~10⁻⁷ -10⁻¹⁰ =>
 can be detected with current experiments.

Model	Ref.	τ—μγ	τ→μμμ
SM + heavy majorana	PRD 66.034008	10-9	10 ⁻¹⁰
Non-universal Z'	PLB 547(3)252	10-9	10-8
SUSY + seesaw	PRL 89:241802	10-10	10 ⁻⁷
SM + 4 th generation	arXiv.1006.530	10-8	10 ⁻⁸
	6		

- Observe signal => New physics.
- <u>Improve limits</u> => constrain parameters of theoretical modes

Search for LFV using τ

- τ the heaviest charged lepton:
 - Various decay modes for LFV search, even decay to hadron.
 - Strength of interaction relate to new physics is naively expected to be mass-dependent.

Belle II results are simply projected from Belle results.

Search for LFV using τ

- $au o l\gamma$ and au o lll are golden mode, which are expected to have the largest branching fraction.
- $\tau \to lll$ is more sensitive than $\tau \to l\gamma$ because of small background.
- Belle II will take 50ab⁻¹ data,
 N_{ττ}~5x10¹⁰
- The sensitivity:

$$+ \tau \rightarrow l\gamma : \sim \frac{1}{\sqrt{L}}$$

 $+ \tau \rightarrow lll : \sim \frac{1}{L}$

(good mass resolution and PID)

Search for LFV using τ

Belle results:

• Data: ~7x10⁸ ττ

• Data; ~4.8x10⁸ ττ τ→μγ

- $\circ~M_{\mu\mu\mu}$ is reconstructed mass of LFV τ decay.

Previous searches for decay τ→μμμ

- The most stringent upper limits are set currently by the Belle and Babar.
- Final signal are observed in M-ΔE windows.

	BaBar (2010)	Belle (2009)
Data	468 fb ⁻¹ (426M $\tau^-\tau^+$)	782fb ⁻¹ (711M $\tau^-\tau^+$)
eff. (%)	6.6	7.6
N _{observed}	0	0
N_{bkg}	0.44±0.17	0.13±0.06
UL @90 C.L.	3.3x10 ⁻⁸	2.1 x10 ⁻⁸

LHCb @2014

- τ from b and c-hadron decays
- 3 fb⁻¹ data (\sim 90x10⁹ τ ⁻)
- Br <4.6 x 10⁻⁸ @90% C.L

ATLAS @2016

```
\tau from W<sup>-</sup>\rightarrowτ<sup>-</sup>ν
20.3fb<sup>-1</sup> at 8TeV taken 2012. (241 x 10<sup>6</sup> τ<sup>-</sup>)
Br <3.76 x 10<sup>-7</sup> @90% C.L
```

Super-KEKB

- At High Energy Accelerator Research Organization (<u>KEK</u>), Tsukuba, Ibaraki, Japan.
- E_{e-}=7 GeV; E_{e+}=4 GeV
- Upgrade of KEKB to increase luminosity by 40 times by:
 - Increase beam current
 - Reduce beam size

To get 40x luminosity of KEKB

Reduce beam size to a few 100 atomic layers!

Expected to take 50ab⁻¹ data sample

=> Detector will upgrade to cope with high beam background and improve measurement precision.

Belle II

4/25/2019 Thanh Dong

LFV study with decay $\tau \rightarrow \mu\mu\mu$

Analysis strategy

- Signal side contains 3 charged tracks.
- Tag side is 1 prog decay (Br~85%).
- \Rightarrow Select 4-track events, $\sum charge = 0$
- Apply general selection for all tag mode.
- Apply final selection tag-by-tag

Track filter

 Remove clone tracks, background tracks before reconstruction based one the impact parameters and number of hits.

Thanh Dong

#ntracks/events

4-track events are selected for the τ reconstruction

(a) Without beam background

(b) With beam background

General selections

• Require μ -ID for one charged tracks

 Average energy deposited in ECL of charged tracks at signal side

Background suppression

 $\begin{array}{ll} \bullet & \text{ 4-vector missing momentum: } P_{miss} = -P_{\tau} - P_{tag} \\ & P_{tag} = P_{charged_Track\,or\,\rho} & \text{ if tag is } \pi\nu,\,\mu\nu,\,\mu\nu,\,\rho\nu \\ & P_{tag} = P_{charged_Track} + P_{gamma} & \text{ if tag is } \pi\pi^0\pi^0\nu \end{array}$

- P_{miss} is required to point into fiducial volume of detector.
- Magnitude selection will be different for each mode.
- Count N_{gamma} which has E>0.1 GeV.
- Maximum 1 gamma is allow at signal side.

Separate tag modes

Tag modes	Branching fraction (%)	Conditions
$\tau \rightarrow e^{-} \overline{\nu}_{e} \nu_{\tau}$	17.36	• $\mathcal{L}(e/\pi) > 0.1$ • $N_{\gamma}^{tag} \leq 1$
$\tau^- \rightarrow \mu^- \overline{\nu}_e \nu_{\tau}$	17.85	• $\mathcal{L}(\mu/\pi) > 0.8$ • $N_{\gamma}^{tag} \leq 1$
$\tau^- \rightarrow \pi^- \nu_{\tau}$	10.91	• $\mathcal{L}(\mu/\pi) < 0.8$ && $\mathcal{L}(e/\pi) < 0.1$ • there is no reconstructed π^0 • $N_{\gamma}^{tag} \leq 1$
$\tau^- \rightarrow \rho^- \nu_{\tau}$	25.51	 L(μ/π) < 0.8 && L(e/π) < 0.1 ρ⁻→π⁻π⁰ is reconstructed
$\tau^- \rightarrow \pi^- \pi^0 \pi^0 \nu_{\tau}$	10.85	Remaining

Tag-by-tag bkg suppression

Using variables:

- Reconstructed pi0, rho, for background suppression.
- Missing information: M_{mis}^2 , P_{miss}
- PID of the second charged track.
- Eecl of charged tracks
- Mass of two charged tracks (M_{ee})
- P_{total}^{cms}

Selections for tag $\tau^- \rightarrow \mu^- \bar{\nu}_e \nu_{\tau}$

- Required $2^{nd} \mu$ -ID if a photon appears at tag side.
- Missing mass and momentum.

To suppress:

- Two- photon process:
 e⁺e⁻→μ⁺μ⁻e⁺e⁻
- μ-pair process:
 e⁺e⁻→μ⁺μ⁻(γ →e⁺e⁻)

Mass and ΔE distribution

Distributions of the Belle II are significantly narrower.

Signal analysis

• Select signal event in the 2σ region (11038 events).

~1.5 times higher than that obtained at Belle.

• Estimated background by loosening the selections then propagate from 5σ to 2σ region.

$$N_{bkg} = 0.13 \pm 0.06$$

The same as belle result.

• Estimate the UL: $\mathcal{B}(\tau \to \mu \mu \mu) < \frac{N_{90}^{UL}}{2N_{\tau\tau}\epsilon}$

For 1 ab⁻¹ with no observed event.

$$\mathcal{B}(\tau \to \mu \mu \mu) < 1.1 \times 10^{-8} \text{ at } 90\% \text{ C.L}$$

~2 times lower than the current limits.

Thank you very much

Back up

- LFV search with muon
 - Experimental set-up is simple and cheap (compared with tau exp).
 - Possible to produce intensity muon beams.
 - But number of decay channel for LFV is limited.

