
Discussion about GPU & GPUPWA

Yan Zhang

USTC

Outline

 Introduction to GPU

 Introduction to GPUPWA

 Process

• Code

• How to run

A simple way to understand the difference between a GPU and a CPU is to

compare how they process tasks. A CPU consists of a few cores optimized for

sequential serial processing while a GPU has a massively parallel architecture

consisting of thousands of smaller, more efficient cores designed for handling

multiple tasks simultaneously.

Introduction to GPU

Introduction to GPU

ALU: Arithmetic and logic unit

Cache(SRAM): Static Random Access Memory

DRAM: Dynamic Random Access Memory

HOW GPUs ACCELERATE SOFTWARE APPLICATIONS

GPU-accelerated computing offloads compute-intensive portions of the application

to the GPU, while the remainder of the code still runs on the CPU. From a user's

perspective, applications simply run much faster.

Introduction to GPU

GPU Accelerated Computing is revolution in High Performance Computing

Introduction to GPU

Introduction to CUDA & OpenCL

DSP...

CUDA is NVIDIA’s parallel computing architecture that enables dramatic

increases in computing performance by harnessing the power of the GPU

(graphics processing unit).

Introduction to our machine

16

GPUPWA provides a C++ interface to covariant tensor manipulation and PWA

fits without bothering the user with GPU internals.

Environment for GPUPWA

Environment for GPUPWA

1. You need to set the path of OpenCL driver:

setenv CUDAROOT /usr/local/cuda-8.0 (tcsh)

export CUDAROOT=/usr/local/cuda-8.0 (bash)

2. You need to set the path of Root (different to those installed in lxslc):

export ROOTSYS=/root/root534

3. You should add the two libs to LD_LIBRARY_PATH.

export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:${CUDAROOT}/lib64:${ROOTSYS}/lib:/usr/local/lib

4. You need to set the GPUPWA path.

export GPUPWA=/xxx/xxx/the/path/to/your/GPUPWA/project/

5. You need to set DISPLAY.

export DISPLAY=0.0

6. You should set the below environment variables if required when apply a front-test gpu account.

export GPUPWA_GPU_NR=your_val

export _NVIDIA=your_val

(export GPU_DEVICE_ORDINAL=your_val

export BRT_ADAPTER=your_val)

7. The below set may be also useful:

export PATH=${PATH}:${CUDAROOT}/bin:$ROOTSYS/bin

GPUPWA

/besfs/users/zhangyan/gpupwa-f17422302b0012facb46505d3c9d3c39788c4492.zip

GPUPWA

DIY is ok here.

GPUPWA example : J/psi  Gamma K K

files.txt

para.inp

res.inp

GPUPWA example : J/psi  Gamma K K

GPUPWA example : J/psi  Gamma K K

GPUPWA example : J/psi  Gamma K K

/besfs/users/zhangyan/GPUPWA_2_1.pdf ------Section10.3

GPUPWA example : J/psi  Gamma K K

GPUPWA example : J/psi  Gamma K K

GPUPWA example : J/psi  Gamma K K

Multifitresults_GammaKKAnalysis_0.txt

GPUPWA example : J/psi  Gamma K K

If you have got a GPUPWA copy, and set all the environment, then

you can try to run a gpupwa program:

Source gpupwa2.1

cd gpupwa

make

cd GammaKK

cp _x86_64/gammakk ./

./gammakk

And wait for the program finish

P.S : If you made some modification in gpupwa/GammaKK/, you can

make in GammaKK directory (if you have done make at the top

directory at least one time).

GPUPWA example : J/psi  Gamma K K

ssh ustc@210.45.78.29
Passwd: P@ss#p0rt

If you want to submit jobs to GPU queue, you can:

Source gpupwa2.1

cd gpupwa

make

cd GammaKK

cp _x86_64/gammakk ./

nohup gammakk & or nohup gammakk > *.out 2>&1 &

And wait for the program finish

mailto:ustc@210.45.78.29

BACK UP

 构造振幅的符号约定和宇称限制

𝜔(𝜉) =
𝑑𝜎

𝑑𝜙
产生几率密度𝑃(𝜉1, 𝜉2, ⋯ , 𝜉𝑛) =

𝑖=1

𝑛

)𝜔(𝜉𝑖)𝜀(𝜉𝑖

)𝑑𝜉𝜔(𝜉)𝜀(𝜉𝑖

构造似然函数

1 2

1 1

()
ln (, ,) ln() ln ()

() ()

n n
i

n i

i i

P
d

 
    

    

  


可以忽略

)𝜀(𝜉 被探测和选择到的几率

)𝐿 = 𝑃(𝜉1, 𝜉2, ⋯ , 𝜉𝑛

𝜎 =)𝑑𝜉𝜔(𝜉)𝜀(𝜉 总截面

1

ln ln()
n

i

d
L

d








Monte Carlo积分

𝜎 = 𝑑𝜉 𝜔(𝜉)𝜀(𝜉) =

𝑖

𝛥𝜉𝑖 𝜔(𝜉𝑖)𝜀(𝜉𝑖) =
1

𝑁𝑔𝑒𝑛

𝑖

 𝑁𝑔𝑒𝑛𝛥𝜉𝑖𝜔(𝜉𝑖)𝜀(𝜉𝑖

𝜎 =
1

𝑁𝑔𝑒𝑛

𝑖

𝑁𝜉𝑖 𝜔(𝜉𝑖) =
1

𝑁𝑔𝑒𝑛

𝑘=1

𝑁𝑀𝐶

)𝜔(𝜉𝑘

𝑑𝜎

𝑑𝜙
= |𝐴|2

𝐴=
𝑖

𝛬𝑖

𝑚

)𝐴(𝑖,𝑚 𝛬𝑖 不同分波振幅的复耦合系数

𝜙𝜇 𝑚 初态粒子的极化四矢量

𝑈𝑖
𝜇

协变张量振幅公式

𝐴(𝑖,𝑚) =
1

𝑁𝑚
𝜙𝜇(𝑚)𝑈𝑖

𝜇

𝑁𝑚 磁量子数m可取值的个数

𝑑𝜎

𝑑𝜙
= |𝐴|2 =
1

2

𝑖,𝑗

𝛬𝑖 𝛬𝑗
∗

𝜇=1,2

𝑈𝑖
𝜇
𝑈𝑗
∗𝜇

𝛬𝑖 = 𝑎 ⋅ 𝑒
𝑖𝑏 = 𝐴 + 𝑖𝐵

𝛬𝑗
∗ = 𝐶 − 𝑖𝐷

𝑈𝑖
𝜇
= 𝑚 + 𝑖𝑛

𝑈𝑗
∗𝜇
= 𝑝 − 𝑖𝑞

𝑃𝑖𝑗 = 𝛬𝑖𝛬𝑗
∗ = 𝛬𝑗𝛬𝑖

∗ ∗ = 𝑃𝑗𝑖
∗

𝐹𝑖𝑗 =
1

2

𝜇=1,2

𝑈𝑖𝑈𝑗
∗𝜇
=
1

2

𝜇=1,2

𝑈𝑗𝑈𝑖
∗𝜇
∗

= 𝐹𝑗𝑖
∗

m𝑖𝑗 = 𝑃𝑖𝑗𝐹𝑖𝑗 = 𝑃𝑗𝑖𝐹𝑗𝑖
∗
= 𝑚𝑗𝑖
∗

𝑀 =

𝑚11 𝑚12 ⋯ 𝑚1𝑛
𝑚21 𝑚22 ⋯ 𝑚2𝑛
⋮ ⋮ ⋱ ⋮
𝑚𝑛1 𝑚𝑛2 ⋯ 𝑚𝑛𝑛

= 𝑀† n个独立的分波

𝑑𝜎

𝑑𝜙
=

𝑖,𝑗=1

𝑛

𝑚𝑖𝑗 =

𝑖=1

𝑛

𝑚𝑖𝑖 + 2

𝑖<𝑗

Re(𝑚𝑖𝑗) =

𝑖=1

𝑛

𝑃𝑖𝑖𝐹𝑖𝑖 + 2

𝑖<𝑗

 Re(𝑃𝑖𝑗𝐹𝑖𝑗

=

𝑖=1

𝑛

𝑃𝑖𝑖𝐹𝑖𝑖 + 2

𝑖<𝑗

 Re(𝑃𝑖𝑗)Re(𝐹𝑖𝑗) − Im(𝑃𝑖𝑗)Im(𝐹𝑖𝑗

i分波和j分波的干涉项

 轨道角动量波函数协变形式

 势垒因子（分母部分）  其他符号

