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A simple way to understand the difference between a GPU and a CPU is to

compare how they process tasks. A CPU consists of a few cores optimized for

sequential serial processing while a GPU has a massively parallel architecture

consisting of thousands of smaller, more efficient cores designed for handling

multiple tasks simultaneously.

Introduction to GPU



Introduction to GPU

ALU: Arithmetic and logic unit

Cache(SRAM): Static Random Access Memory

DRAM: Dynamic Random Access Memory



HOW GPUs ACCELERATE SOFTWARE APPLICATIONS

GPU-accelerated computing offloads compute-intensive portions of the application

to the GPU, while the remainder of the code still runs on the CPU. From a user's

perspective, applications simply run much faster.

Introduction to GPU



GPU Accelerated Computing is revolution in High Performance Computing 

Introduction to GPU



Introduction to CUDA & OpenCL

DSP...

CUDA is NVIDIA’s parallel computing architecture that enables dramatic

increases in computing performance by harnessing the power of the GPU

(graphics processing unit).



Introduction to our machine
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GPUPWA provides a C++ interface to covariant tensor manipulation and PWA

fits without bothering the user with GPU internals.

Environment for GPUPWA



Environment for GPUPWA

1. You need to set the path of OpenCL driver:

setenv CUDAROOT /usr/local/cuda-8.0 (tcsh)

export CUDAROOT=/usr/local/cuda-8.0 (bash)

2. You need to set the path of Root (different to those installed in lxslc):

export ROOTSYS=/root/root534

3. You should add the two libs to LD_LIBRARY_PATH.

export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:${CUDAROOT}/lib64:${ROOTSYS}/lib:/usr/local/lib

4. You need to set the GPUPWA path.

export GPUPWA=/xxx/xxx/the/path/to/your/GPUPWA/project/

5. You need to set DISPLAY.

export DISPLAY=0.0

6. You should set the below environment variables if required when apply a front-test gpu account.

export GPUPWA_GPU_NR=your_val

export _NVIDIA=your_val

(export GPU_DEVICE_ORDINAL=your_val

export BRT_ADAPTER=your_val)

7. The below set may be also useful:

export PATH=${PATH}:${CUDAROOT}/bin:$ROOTSYS/bin



GPUPWA

/besfs/users/zhangyan/gpupwa-f17422302b0012facb46505d3c9d3c39788c4492.zip



GPUPWA

DIY is ok here.



GPUPWA example : J/psi  Gamma K K

files.txt

para.inp

res.inp



GPUPWA example : J/psi  Gamma K K



GPUPWA example : J/psi  Gamma K K



GPUPWA example : J/psi  Gamma K K

/besfs/users/zhangyan/GPUPWA_2_1.pdf          ------Section10.3



GPUPWA example : J/psi  Gamma K K



GPUPWA example : J/psi  Gamma K K



GPUPWA example : J/psi  Gamma K K

Multifitresults_GammaKKAnalysis_0.txt



GPUPWA example : J/psi  Gamma K K

If you have got a GPUPWA copy, and set all the environment, then 

you can try to run a gpupwa program:

Source gpupwa2.1

cd gpupwa

make

cd GammaKK

cp _x86_64/gammakk ./

./gammakk

And wait for the program finish

P.S : If you made some modification in gpupwa/GammaKK/, you can 

make in GammaKK directory (if you have done make at the top 

directory at least one time). 



GPUPWA example : J/psi  Gamma K K

ssh  ustc@210.45.78.29
Passwd: P@ss#p0rt

If you want to submit jobs to GPU queue, you can:

Source gpupwa2.1

cd gpupwa

make

cd GammaKK

cp _x86_64/gammakk ./

nohup gammakk & or nohup gammakk > *.out 2>&1 &

And wait for the program finish

mailto:ustc@210.45.78.29


BACK UP



 构造振幅的符号约定和宇称限制
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Monte Carlo积分
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i分波和j分波的干涉项



 轨道角动量波函数协变形式

 势垒因子（分母部分）  其他符号






