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Abstract
Artificial neural networks are the machine learning technique best known in
the high-energy physics community. Introduced in the field in 1988, followed
by a decade of tests and applications received with reticence by the community,
they became a common tool in high-energy physics data analysis. Important
physics results have been extracted using this method in the last decade. This
lecture makes an introduction of the topic discussing various types of artificial
neural networks, some of them commonly used in high-energy physics, other
not explored yet. Examples of applications in high-energy physics are also
briefly discuss with the intention of illustrating types of problems which can be
addressed by this technique rather than providing a review of such applications.

1 Introduction
Artificial Neural Networks are modest attempts of algorithmic modelling of biological neural systems.
The human brain abilities to perform simultaneously complex tasks, to learn, memorise and generalise,
inspired computer scientists to develop computer algorithms based on the same principles as those of
the human brain functioning. Artificial Neural Networks are the results of such efforts. So far they are
able to solve single objective problems which are of moderate complexity relative to the human brain
capabilities. Reproducing the complex human brain abilities is still a desideratum.

A biological neural system is a network of neural cells called neurons. Signals propagate from one
neuron to another when the cell “fires”. Hence, a neuron can either excite or inhibit a signal.

Artificial Neural Networks (ANN) are layered networks of artificial neurons (AN) which are mod-
els of the biological neurons. Each AN receives signals from another AN or from the environment,
collects them and forms an output signal which is transmitted to another AN or to the environment. An
ANN consists of one input layer, one or more hidden layers and one output layer of ANs. Each AN in a
layer is connected, fully or partially, to the ANs in the next layer. In some ANN configurations feedback
connections to the previous layers are introduced.

2 Artificial neural network architecture
2.1 Artificial neuron

Fig. 1: An artificial neuron

A representation of an AN is depicted in Fig. 1. AN receives a set of input signals (x1, x2, ..., xn)
from the environment or from another AN. A weight wi (i = 1, .., n) is associated to each input signal.
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If the weight is positive then the signal is excited. Otherwise the signal is inhibited. AN collects all the
input signals, calculates a net signal and transmits an output signal.

The net signal can be calculated as the the sum of the input signals, in which case the AN represents
a summation unit:

net =
n∑
i=1

wixi, (1)

or as the product of the input signals in which case the AN represents a product unit:

net =
n∏
i=1

wixi. (2)

The product unit has a higher information capacity than the summation unit as it allows higher
order combinations of inputs.

The output signal is calculated using a function called an activation function which depends on the
value of the net signal net and a threshold value θ called bias.

For a more compact treatment, the bias can be considered as an additional input unit (signal) called
a bias unit with the value xi+1 = −1 and the weight wi+1 = θ. In this case the net signal is calculated
as:

net =
n+1∑
i=1

wixi, (3)

or

net =
n+1∏
i=1

wixi, (4)

and the activation function becomes dependent only on this net signal.
Different types of activation functions are possible. Some common choices are:

– linear functions
f(net) = β · net, (5)

where β is a constant;
– step functions

f(net) = 1, net ≥ 0 (6)
f(net) = 0, net < 0; (7)

– Sigmoid functions
f(net) =

1
1 + e−λ·net

, (8)

where, usuallym λ = 1;
– Gaussian functions

f(net) = e−
n̄et2

σ2 , (9)

where n̄et is the mean value of the net signal and σ2 is the variance of the Gaussian distribution
of the net signal.
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2.2 Types of artificial neural networks
A single AN is quite limited in its functionality as it can produce linearly separable functions only. For
more complex functions a network of interconnected ANs are necessary. One simple way to organise the
ANs is in layers resulting a class of ANN called multi-layer ANNs.

Fig. 2: A multi-layer ANN

An example of a muti-layer ANN is shown in Fig. 2. It contains a layer of n input neurons xi
(i = 1, ..., n), a hidden-layer of m neurons yj with the activation function fyj (j = 1, ...,m) and an
output layer of p neurons zk with the activation function fzk (k = 1, ..., p). The activation functions
could be different for different layers. Also the input layer could have an activation function. In the
example shown in Fig. 2 no activation function is considered for the input layer.

The connections between the neurons are weighted with different values. vji are the weights
between the input layer and the hidden layer, and wkj are the weights between the hidden layer and
the output layer. Using these weights, the network propagates the external signal through the layers
producing the output signal which is of the form (for a network with summation units):

zk = fzk(netzk) = fzk(
m+1∑
j=1

wkjfyj (netyj )) = fzk(
m+1∑
j=1

wkjfyj (
n+1∑
i=1

vjixi)). (10)

This type of ANN, which simply propagates the input through all the layers, is called a feed-
forward multi-layer ANN.

The example discussed here contains only one hidden layer. The network architecture can be
extended to contain as many hidden layers as necessary. It was demonstrated, however, that a feed-
forward multi-layer ANN with monolithically increasing differentiable functions can approximate any
continuous function with only one hidden layer, provided this layer has enough nodes (neurons) [1]. In
practice it was observed that some variations in ANN performance can be obtained by increasing the
number of hidden layers. Hence, it is recommended to explore various network configurations for each
application, starting with a one hidden layer architecture and gradually increasing the number of hidden
layers in order to identify the optimal configuration.

The input layer of a feed-forward ANN can be extended into a layer of functional units, as a
means of implementing an activation function for the input layer. Such a version of an ANN is called
functional link ANN [2]. An example is shown in Fig. 3. This network is similar with the previously
discussed ANN, except it has an additional layer, called the functional layer, which contains q functions
hl(x1, ..., xn) (l = 1, ..., q). The weights between the input layer and the functional layer are uli = 1 if
hl depends on xi, and uli = 0 otherwise. The output of this ANN is:

zk = fzk(
m+1∑
j=1

wkjfyj (
q+1∑
l=1

vjlhl(x1, ..., xn))). (11)
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Fig. 3: A functional link ANN

Functional link ANNs were found to give better performance in terms of computational time and
accuracy of the results than a simple feed-forward multi-layer ANN [2].

Fig. 4: A recurrent ANN

A different class of ANNs can be obtained by introducing a feedback connection in the propagation
of the signal through the layers. Such networks are called recurrent ANNs [3]. An example of such a
network is shown in Fig. 4. In this case the network contains an additional layer, called the context layer,
which is, in fact, the copy of the hidden layer from the previous state of the network (previous iteration in
the learning process). The input layer is now extended with the units of the context layer. This means the
input signals will be made of the actual inputs (x1, ..., xn) and the context units (xn+2, ..., xn+1+m) =
(y1(t − 1), ..., ym(t − 1))), where t represents the current iteration of the network. The weight of the
hidden unit connected to the corresponding context unit is, in general, equal to one, but different values
can be used. The output signal of this type of network is:

zk = fzk(
m+1∑
j=1

wkjfyj (
n+1+m∑
i=1

vjixi)). (12)
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The recurrent ANNs have the advantage of being able to learn temporal characteristics of the data
sets to which they are exposed.

The type of ANNs discussed here are only a few from the many proposed in the literature. Spe-
cialized books cover largely the topic, in different levels of details [4]. A specialized IEEE journal [5]
publishes the last developments in the field.

3 ANN learning
The learning process for an ANN is the process through which the weights of the network are determined.
This is achieved by adjusting the weights until certain criteria are satisfied.

There are there main types of learning:

– supervised learning - the ANN is presented with a training data set which contains the input vectors
and a target associated with each input vector. The target is the desired output. The weights of the
ANN are adjusted iteratively such that the difference between the actual output of the ANN and
the target is minimized.

– unsupervised learning - the ANN is presented with a data set which contains only the input vec-
tors. The weights of the ANN are adjusted such that the output provides a clustering of the input
vectors based on certain criteria. This type of learning allows the discovery of patterns (clusters or
regularities) in the data.

– reinforcement learning - the ANN is presented with a data set which contains only the input vec-
tors. The weights of the ANN are adjusted such that those parts of the ANN which give a good
performance (based on certain criteria) are rewarded while the other parts are penalised.

In this lecture only the supervised learning will be discussed as being the one used in the vast
majority of the high-energy physics applications.

The most common supervised learning method is based on the gradient descent learning rule. The
method optimises the network weights such that a certain objective function E is minimised by calculat-
ing the gradient of E in the weight space and moving the weight vector along the negative gradient.

For a single AN the objective function is usually an error function which measures the AN‘s error
in approximating the target vector:

E =
P∑
p

(tp − yp)2, (13)

where tp is the target value for the pattern p, yp is the actual output for the pattern p and P is the total
number of patterns in the data set. In this context a pattern represents a data instance or, in high energy
physics terminology, an event, together with its associated target value.

The weights of the AN are adjusted by exposing it more times to the training data set. For a single
training pattern the weights of an AN are adjusted with the formula:

wi(t) = wi(t− 1) + ∆wi(t), (14)

∆wi(t) = η(− δE
δwi

), (15)

δE

δwi
= −2(tp − yp) δf

δnetp
xi,p, (16)

where t represents one iteration in the training process, f the activation function, i = 1, ..., n with n
being the number of elements of the input vector, and η is the learning rate which represents the size of
the steps taken in the negative direction of the gradient.
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In the case of an ANN the gradient descent weight optimisation contains, for each iteration (usually
called epoch), two phases:

– feed-forward pass in which the output of the network is calculated with the current value of the
weights,

– backward propagation in which the errors of the output signal are propagated back from the output
layer towards the input layer and the weights are adjusted as a function of the back-propagated
errors.

For the ANN with a hidden layer discussed previously the objective function of the learning pro-
cess is:

Ep =
1
2

∑K
k=1(tk,p − zk,p)2

K
, (17)

where K is the number of neurons in the output layer and the p index refers to a training pattern.
The weights are updated with the formula:

wkj(t) = wkj(t) + ∆wkj(t) + α∆wkj(t− 1), (18)
vji(t) = vji(t) + ∆vji(t) + α∆vji(t− 1), (19)

∆wkj = η(− δE

δwkj
) = −ηδzkyj, (20)

∆vji = η(− δE

δwji
) = −ηδyjzi, (21)

where δzk = δE
δnetzk

is the output error, δyj = δE
δnetyj

is the hidden layer error, η the learning rate, and α
is a parameter called momentum (it will be discussed further in this section).

To summarise, the supervised learning process implies the following steps:

1. initialisation of the weights, the η and α parameters, and the number of epochs ξ = 0;
2. initialisation of the error function ET = 0;
3. for each training pattern

a) calculate yj,p and zk,p (feed-forward phase);
b) calculate the output error δzk,p and the hidden layer error δyj ,p;
c) adjust the weights wkj and vji (back-propagation phase);
d) update of the error function ET = ET +Ep;

4. update the number of epochs ξ = ξ + 1;
5. test the stopping criteria; if this is not met then the process continues from the step 2.

As stopping criteria, common choices are a maximum number of epochs, a minimum value of the
error function evaluated for the training data set, and the over-fitting point (which will be discussed in
the next section).

The initialisation of the weights, the learning rate and the momentum are very important for the
convergence and the efficiency of the learning process.

For weights, it is recommended to start with small random values around zero or in the interval
[−1/

√
fanin, 1/

√
fanin] where fanin is the number of connections leading to a unit of the network

[6]. This methods will avoid any bias toward a particular solution and the trap of the optimisation in a
local minimum.

The learning rate η is a parameter which controls the size of each step toward the minimum of
the objective function. If the value is too small the adjustment of the weights will also be small and a
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high number of epochs is needed to reach a minimum. If, instead, the value is too high the convergence
might be initially fast but the optimisation might oscillate around a minimum without reaching it, or
might jump a good minimum and converge to a bad one. For these reasons it is recommended to start
with small values around 0, such as 0.1, and to gradually increase it if the convergence is too low, or to
decrease it if the error does not decrease fast enough.

Momentum η is a parameter which ensure the search path is in the average downhill direction
of the error. When the weights of the network are updated after each data pattern, the weight changes
fluctuate in the sign of the error derivative making the network to go back and forth and to unlearn what
it learned in the previous steps. To avoid this problem, the weight changes are averaged by adding a term
in the learning rule which is the previous change weighted with the momentum parameter. The usual
value for this parameter is 0.9.

4 ANN performance measures
ANN performance can be analysed from different points of view. Common performance measures are
the accuracy of predictions, the time complexity and the convergence of the learning process.

The accuracy is usually measured in terms of mean squared error:

E =

∑P
p=1

∑K
k=1(tk,p − zk,p)2

PK
, (22)

where P is the number of patterns in the data sample and K is the number of outputs of the network.
When this error is calculated for the training data it is called the training error. When it is calculated

for another independent data set, not used in the training, the error is called the generalisation error.
The generalisation error characterises how well the network is able to model new data, not used

in the learning process. Hence the objective of the learning process is to obtain a network with a low
generalisation error.

Fig. 5: Representation of the over-fitting effect. ET represents the training error and EG the generalisation error.

The generalisation error does not necessarily follow the behavior of the training error. With the
increase of the number or epochs, the training error tends to decrease . The generalisation error also
decrease up to a certain point, called the over-training or over-fitting point, after which the generalisation
error tends to increase while the training error continues to decrease (see Fig. 5).

The over-fitting happens when the ANN tends to memorise the training patterns. In this case the
network has a low capability to generalise to new data sets. The effect occurs particularly when ANN is
very large, meaning that it has too many hidden nodes and hence, too many weights to be optimised. To
avoid the over-fitting, the network architecture needs to be optimised for the problem at hand and to be
exposed to a sufficiently large training data set.
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The over-fitting point is determined by estimating the generalisation error on an independent data
set called the validation data set. Quantitatively, the over-fitting point is the point for which

EV > ĒV + σEV , (23)

where EV is the validation error (the generalisation error calculated for the validation data set), ĒV is the
validation error averaged over the previous epochs and σEV is the standard deviation of the validation
error values.

Alternative or complementary accuracy measures to the generalisation errors can be used for eval-
uating the ANN performance.

For specialised problems such as classification a common choice is the classification accuracy
defined as the percentage of the data patterns correctly classified by the network.

The correlation between the network outputs and the target values is also of interest. It is measured
by the correlation coefficient defined as:

r =
∑n

i=1(xi − x̄)
∑n

i=1(yi − ȳ)
σxσy

, (24)

where x = zk,p and y = tk,p.
The ability of an ANN to converge to a certain error level is another performance measure. This

ability, called convergence, is quantitatively (and empirically) expressed as the number of times, out of
a fixed number of simulations, the ANN succeeds to reach the specific error level. Extensive theoretical
studies exists on this topic which will not be discussed here.

For practical problems the computational complexity, meaning the computational time needed to
train the network, is of significant importance. Various measures can be used to evaluate it: the number of
epochs to reach a certain error, the number of patterns presentations, the number of weight updates or the
total number of calculations made during training. Among the factors which influence this complexity,
the network architecture, the size of the training data set and the complexity of the learning rules used
were found to have considerable impact.

5 Applications in high-energy physics
Artificial Neural Networks had a late and timid start in high-energy physics. They were introduced in this
field in 1988 [7], [8], almost 40 years after their invention. For other ten years their exploitation remained
sporadic and received with scepticism by a significant part of the high-energy physics community. Only
since late nineties ANNs started to be used more broadly, probably due to an increased complexity of the
data and physics process investigated which imposed more demands on the analysis techniques. A good
review of these applications until 1999 was published in [9]. During the last couple of years ANNs have
become quite routinely used in experiments such as BaBar [10], CDF [11] and D0 [12].

In terms of types of ANNs, the vast majority of applications in high-energy physics are based
on feed-forward multi-layer ANN with back-propagation. The first application, however, in 1988, was
of a recurrent ANN for tracking reconstruction [9], [8]. A recurrent ANN was also used for tracking
reconstruction in DELPHI experiment [14]. Other types of ANNs remained almost unexplored.

In terms of types of applications, ANN were used for both online triggers and offline data analysis.
The application of ANNs for online triggering of particle physics events can be easily understood

if the high similarity between a basic coincidence circuit (which is the basic unit of a triggering system)
and an Artificial Neuron is noticed. Fig. 6 shows a coincidence circuit which is to be compared with
Fig. 1 of an AN. The potential Vi can be considered analogous to the input signal xi, the resistors Ri
analogous to the weights, the threshold of the circuit analogous to the AN bias and the transfer function
σl analogous to the activation function f(net). Both the circuit unit and the AN can be “fired” or not.
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Fig. 6: Basic coincidence electric circuit

Two running experiments which used neural network triggers are DIRAC [13] and H1 [15]. Pre-
vious applications were reviewed in [9]. The H1 neural network trigger, for example, was implemented
in the level 2 trigger of the experiment. It is based on feed-forward ANNs with 3 layers and used to
separate physics from background events. The trigger contains an ANN for each physics process (twelve
in this case). The input variables were energy sums in subsets of the calorimeter, information on ver-
tex position, and charge tracks multiplicities. The output was one or zero, for physics or background
events, respectively. A full description of the system can be found on the project webpage [16] and in
the corresponding publications listed there.

For offline data analysis ANNs were used or tested for a variety of tasks such as track and vertex
reconstruction, particle identification and discrimination, calorimeter energy estimation and jet tagging.

In terms of physics processes studied, the first application from which a physics results was ex-
tracted with an ANN was for the decay of the Z boson [17]. A feed-forward network was used to
discriminate the decay of the Z boson into c, b or s quarks and the results used further to determine the
decay probability of Z into the corresponding states.

Other important physics results were obtained with feed-forward neural networks at Tevatron ex-
periments such as the direct measurement of the top quark mass [18] or laptoquark searches [19]. ANNs
continue to be important techniques in the search for the Higgs boson an the Tevatron experiments.

Also the BaBar experiment extracted numerous physics results concerning the decay of B mesons
using feed-forward neural networks.

The LHC experiments tested ANN for various applications, many of the studies being published
in the proceedings of the ACAT conference [20] over the last couple of years. It remains to be seen if the
method will be, indeed, used in the running experiments.

In these applications ANNs gave better results than the standard methods mainly due to the highly
non-linearity character of the method. Its drawback is the lack of transparency of the results which is the
main reason a significant number of particle physicists were reticent about the method. Today, however,
this drawback seems to be overcome.

Another important issue with the method is that it is based on supervised learning which requires
a data set, in many situations of considerable size, for which the target output is known. In the vast
majority of cases such data is obtained by Monte Carlo simulations. In this way the result is very much
dependent of the quality of the simulation. While for low level pattern recognition applications a highly
reliable simulation can be easier achieved, for high level physics analysis the simulation incorporates
theoretical model which might bias the results. When the physics process is poorly known, the method
can become unusable.
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6 Conclusions
Artificial neural networks were proven as valuable methods in high-energy physics for online and offline
data analysis tasks. They have a number of characteristics which make them appreciated. They provide
highly non-linear outputs, taking into account the correlation between the inputs, and hence their poten-
tial in event selection goes beyond the conventional cut-based approach. They are also tolerant to noise,
are fast due to the intrinsic parallelism and hence easily implementable in electronic circuits for online
event selection, and have a good programmability which makes them quickly adaptable to new running
conditions.

There are, however, a number of disadvantages associated with this technique. The interpreta-
tion of the network output is not obvious and this lack of transparency makes physicists to be reticent.
Extensive tests are needed in order to prove the correctness of the results. Another big disadvantage is
the need to rely on Monte Carlo simulations of the physics process studied and of the response of the
experimental apparatus for the network learning, as the supervised learning is used in the vast majority
of cases. This restricts the applicability of the technique to situations when both the physics process and
the experimental apparatus are very well understood.

While continuing to use the Artificial Neural Networks in the same manner as so far will very
probably provide important results for high-energy physics, new directions should be explored in or-
der to adapt them to new demands such as those impose by the LHC experiments, for example. Two
such directions could be the investigation of more complex types of neural networks than the simple
feed-forward ones, and the investigation of the unsupervised neural networks which might be useful in
searching for new physics processes and particles.
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