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Abstract: 

The current status of using artificial neural networks in high energy physics is briefly 
reviewed. Examples of successful off-line applications for jet identification and track­
ing are presented. Also, non-classification applications like process control and mass 
reconstruction are discussed. For classification tasks the approach is demystified by 
stressing that the output can be interpreted as Bayesian probabilities. 

In the optimization domain several approaches to track finding are discussed. In 
particular template matching approaches are enlphazised - the elastic anus algorithnl 
and the rotor model. 
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1 Introduction 

Artificial Neural Networks (ANN) are now being widely explored in high energy physics, in particular 
as classifiers in off-line data analysis. Also on-line triggers based on ANN are being installed. In 
this review talk I focus on those issues that I find particularly interesting, new and/or ignored. For 
more tutorial and complete treatments of the subject the reader is referred to refs. [1, 2]. In order 
to make the presentation somewhat self-contained very brief descriptions of the main algorithms 
and architectures are also included. 

2 Feed-forward Architectures 

2.1 Classifiers 

For pattern recognition problems the so-called multi-layer percept ron (MLP) [3] is the most com­
monly used one. Here a functional mapping from input (Zk) to output (Oi) values is realized with 
a function Fi , 

Fi(Zl, Z2, •.. ) = 9(l:::Wij9(L WjkZk)] (1) 
j k 

which corresponds to the feed-forward architecture of fig. 1. The parameters to be fitted are the 
"weights" Wij and Wjk. The "transfer function" 9 is usually chosen as g(z) = 0.5[1 + tanh(z)]. The 
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Figure 1: A one hidden layer feed-forward neural network architecture. 

bottom layer (input) corresponds to the observed quantities Xk and the top layer to the features 0i. 

The mission of the so-called hidden layer is to build up an internal representation of the observed 
data. Each unit, or neuron, has the threshold behaviour given by g(x). In fig. 1 only one hidden 
layer is displayed. The algorithm can be generalized to any number of hidden layers. Fitting to a 
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given data set (or "learning") takes place by minimizing e.g. a summed square error2. 

E 
1 

""'( t.·)2 (2)2 L." °i • 
i 

with respect to the weights Wi; and W;k, where ti are the desired feature values (the targets) [3]. 
This is done by presenting all the training patterns repeatedly with successive adjustments of 
the weights. Once this iterative learning has reached an acceptable level in terms of a low error E, 
the weights are frozen and the ANN is ready to be used on patt~rns it has never seen before. The 
capability of the network to correctly characterize these test patterns is called generalization 
performance. The "vanilla" procedure for minimizing eq. (2) is gradient descent, where the weights 
Wi; are iteratively updated according to 

8E 
-1]-- (3) 

8Wij 

Updating Variants 

There exist of course alternatives to eq. (3) for minimzing eq. (2). One is Conjugate Gradient 
(see e.g. ref. [4]). Virtually no improvements have been observed with this method for a number of 
different applications [5]. In using eq. (3) one might get stuck in local minima. One way of avoiding 
this is the Langevin updating method. Here one regards eq. (3) as a forward Euler approximation 
of the differential equations 

8E 
(4)

dt 

with Llt=1]=1. Augmented with a white appropriately normalized Gaussian random noise eeq. (4) 
becomes the Langevin equation 

dwij 8E + e(T) (5)
dt 

The noise term facilitates avoiding local minima. Its width (or temperature T) is lowered during 
the updating process. This extension of the gradient descent method seems to be the most effective 
and robust one for difficult problems [6]. 

Architecture 

Another issue is of course that of architecture. The number of weights (N1II) as compared to the 
number of training patterns (Ntr ) determines the capability of the network to generalize. 

In high energy physics "raw" calorimeter data contain many input nodes and consequently many 
weights, which poses a problem in this context. However in many cases one has symmetries in 
the input data (e.g. rotation, translation, .. ). If these can be incorporated into the architecture 
in one way or another the number of necessary input patterns of course decreases. In the case 
of translation, rotation and scale invariance the symmetries can of course be taken into account 
by appropriate Fourier preprocessing of data. There exist two alternative procedures, which are 
related to each other and more general, that deal with symmetries and reduce the effective number 
of weights, local receptive fields [3] and weight clustering [7]. We refer the reader to ref. [8] for a 
discussion of these issues. 

20ther error measures exist (see e.g. ref. [2]. 
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For off-line analysis it is often fruitful to preprocess the data. This can be done either by using 
application expertise in terms of choice of intelligent variables (various shape parameters etc. in jet 
tagging) or by some standard linear procedure like principal component analysis (peA) [9] where 
only the directions of the high dimensional input space correponding to the leading eigenvalues are 
kept for further ANN processing. 

Interpretation of Output Values 

When using feedforward networks for test data the classifying output units need not take values 
that are exactly 1 or O. How should these be interpretted? It has been shown that these can be 
interpretted as Bayesian probabilities [10] provided: (1) The estimation is accurate, (2) the outputs 
are of l-of-M-type, (3) a square error or cross entropy error function is used. Recall that (see e.g. 
ref. [11]) a Bayesian probability P(Cili) represents the conditional probability for a class Ci given 
input i Bayes rule tells us that it can be expressed as 

(6) 


where P{ilG.,) is the conditional probability for producing the input vector i given the class Ci 
and P{Ci) is the a priori probability of class Ci- P{i) is the input probability distribution. In 
conventional Bayesian analysis P{iICi) is given by well-known parametric distributions, e.g. Gaus­
sians and the training involves estimating the parameters. In the feed-forward ANN non-parametric 
training results in the left hand side of eq. (6) directly. The benefit from this Bayesian interpretation 
of the ANN output units is obvious - the latter can be subject to higher level decision analysis. 

High Energy Physics Applications 

Identifying the origin of jets has been a major application area so far. Successful discrimination of 
gluon from quark jets have been reported both in both e+e- annihilation [12][13][14] and hadron­
induced reactions [15][16] using MLP. Identifying b-quarks in annihilation was originally 
pursued in ref. [13] with encouraging results using four momenta of the leading hadrons with the 
MLP network. These results were later refined using preprocessed input variables like sphericity, 
transverse masses etc., giving rise to improved efficiencies and purities [17]. In fact the ANN 
approach to b-quark tagging has opened up the field of finding b-quarks by means of hadronic final 
states only. This general purpose detector attitude poses an inexpensive and competitive alternative 
to special purpose vertex detector and lepton tagging methods (see also ref [18] for new b-quark 
tagging applications). An ANN methology for finding t-quark jets at pp colliders have also been 
suggested, again with preprocessed input data [19]. 

In general the off-line ANN jet identification applications give results that are better than or equal 
to what is obtained with conventional methods. In the case of equal performance we feel that the 
ANN approach has the advantage of being a "black box", which implies that the number of man­
hours needed to analyze experimental data is relatively small. Illuminating comparisons between 
conventional classifiers and ANN for off-line heavy quark tagging using "intelligent" variables can 
be found in refs. [20, 21, 22]. In fig. 2 such a comparison is shown for a efficiency/purity ratio. As 
can be seen the ANN method does very well in the comparison. 

One should keep in mind that the jet identification results depend on the Me model used to generate 
the training data. Hence one should limit the training to hadrons located in regions of phase space 
where the different Me models differ as little as possible. In practice this typically means the most 
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Figure 2: Purity/efficiency for b-quark discrimation (from ref. [20]) using single variable discrimi­
nant (star) and multivariate (lozenge) and ANN (open circle) respectively. 

energetic hadrons in the jets. 

For the next generation of accelerators (LHS, SSC) the availability of trigger algorithms that can 
be executed in real-time will be crucial since the event rate at these machines is of the order of one 
event per 10-100 ns. ANN with their intrinsic parallelism and simple processing units are almost 
ideal for this purpose. Indeed a hardware neural network based on the Intel ETANN chip [23] is 
being installed into the FNAL CDF detector for b-quark identification using lepton tagging [24]. 

2.2 Function A pproximators 

The same class of architectures can be used for cases where the output node is linear, representing 
any real number and not just a binary class. In this case the network serves as a general function 
approximator. The sigmoids turn out to be very efficient in capturing almost any non-linear 
behaviour. Impressive results in this area have been reported with chaotic non-linear times series 
(see ego ref. [25]) and real-world problems (see e.g. ref. [26]). Here we report on two applications 
within high energy physics, where ANN are used as function approximators mass reconstruction 
and accelerator process control. 

Mass Reconstruction 

When hunting for new particles or resonances one often encounters the problem of computing 
invariant masses out of expected decay products. An ANN method has been developed [27] where 
the invariant mass is computed from calorimetric information of hadronic decay particles for the 
process W -+ qij -+ hadrons in pP collisions. It this case a linear output unit representing mw is 
used and the input consists of calorimetric signals. In order to prevent the network from learning 
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just one mass value (Mw) "by heart", W-bosons with fictive masses flatly distributed with 300 
events per GeV in the interval [40,160] GeV were generated for training. For test set events with a 
normal mixture of Wand ZO events with Mw = 80.0 GeV and Mzo = 91.2 GeV were generated. 

The standard procedure for reconstructing masses is to use the "window" or cone algorithm to find 
two jets, defined as the two circular areas in the f/, ¢ plane with radius R2 = ~f/2 + ~¢2 with the 
largest EJ.., and then to calculate their invariant mass. In ref. [28] it was found that the optimum 
choice of R is 0.8. This method was employed in ref. [27] to provide a comparison for the ANN 
algorithm3 . The final value of the width from the ANN algorithm is 0.15 as compared with 0.19 

network -­
window ----.5 

4 

3 

2 

o ~----~~=-~~--------~------~~~~~~--~ 
0.0 0.5 1.0 1.5 2.0 

r =(reconstructed mass)/(true mass) 

Figure 3: The reconstructed mass (Mw,z) divided by the true mass (l\Ia,.z) using the neural network 
method (full line) and the conventional "window" method (dashed line) with R = 0.8. 

when reconstructing the mass with the "window" method. In fig. 3 this distribution is shown for the 
test set with a normal mixture of events with Wand Z distributed according to their true masses 
and widths. As can be seen from fig. 3 the neural network approach does significantly better than 
the conventional method, both with respect to peak position and width. The main reason for this 
is that it captures the gluon bremsstrahlung tails well and that it is more resistant to noise. 

The method developed here could be of utmost importance when it comes to separating HO --+ 

W+W- produced at LHCjSSC energies from a background consisting of W + jets, tt --+ W + jets 
and bb --+ 1+ jets. In this case one needs to reconstruct l\lw. 

Process Control 

Using ANN for process control involves two steps: 

• System identification (fixing the weights). 

• Optimization of setpoints. 

System identification. This falls within the function approximator domain described above. In 

3In reality the the cone algorithm in JETSET [29] called LUCELL was used which is only slightly different froIll the 
one of ref. [28]. 
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this case one has a set of outputs (Oi) representing the quantities to be optimized. These depend 
on control settings Ck, and measured state variables Sk 

(7) 

This situation represents a static system (like pattern recognition). However, dynamical systems 
often have a time lag dependence that can be included by having quantities at time t as outputs, 
Oi(t). Correspondingly earlier recordings of the outputs [Oi(t - l),oi(t - 2), ... ,Oi(t - r)] are fed into 
the network as inputs 

(8) 

The information in these delayed inputs contains to some extent those state variables that are not 
explicitly measured and included in the input. 

Optimization of setpoints. Once the weights have been determined from fitting eq. (1) to training 
data the established model can be used to to optimize 0i with respect to the control settings Ck. This 
can be done either with exhaustive search, gradient descent, or some other approximate procedure. 
Needless to say the reliability of new settings will rely on to what extent the training data used for 
establishing the function covers the relevant parts of phase space well (see below). 

In ref. [9] promising exploratory investigations were made predicting the CERN SPS IOn source 
intensity. 

Self-organization 

The MLP networks discussed above assumes the knowledge about what features (Oi) are relevant 
from the outset and separates the data accordingly. There is also an alternative approach, sel/­
organization where the network organizes the data into features without any external teacher (no 
output units) [31]. The underlying architecture consists of an input layer (:.uk) and a layer of feature 
nodes denoted hj (see fig. 4), where 

hj geL W.ikXk) = g(Wj . i) (9) 
k 

For all patterns presented the weights are updated such that the angles between Wj and i are 
minimized. Also, topological ordering between the feature nodes hj are introduced with a "mexican­
hat" potential, such that neighbouring nodes in a plane react to similar features. Such a system has 
no "teacher" like the feed-forward MLP network above where answers are compared with correct 
values ti. The results in this approach are extremely easy to analyze; the weight vectors for the 
different feature nodes point in the direction of typical data in x-space. These networks are natural 
extensions of the well known k-means clustering algorithm [30J. It is also interesting to note that 
with an appropriate learning rule the network in fig. 4 can host the pricipal component analysis 
(peA) (see e.g. ref. [1]). 

For classification purposes one can augment self-organization with supervised learning for fine tuning 
the units specific to certain features [31]. This is called learning vector quantization (LVQ) and 
amounts to learning correct answers and unlearning incorrect answers. As was demonstrated in ref. 
[32] this LVQ variant handles high dimensional problems less efficiently than the MLP. 
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Figure 4: A one-layer self-organizing network. Lateral interactions between the feature nodes cor­
respond to the" mexican-hat" potential. 

In the area of heavy quark identification self-organizing networks have turned out to be fruitful 
given the power of these networks to illuminate the underlying structure [33]. Also subtle differences 
between different fragmentation models were discovered using a self-organizing network [33J. 

Track Finding 

Feedback ANN approaches, and variations thereof, have shown quite some power in finding good 
approximate solutions -to difficult optimization problems [34, 35, 36, 37, 38J. In refs. [39, 40] such 
an approach is pursued for toy-sized high energy physics track finding problems. The basic idea is 
to assign a decision element (neuron) Sij between two signals i and j which is equal to 1 if i and j 
are connected and 0 otherwise. An energy function 

(10) 

is then constructed such that smooth tracks with no bifurcations correspond to global minima. In 
order to avoid local minima in eq. (10) the mean field approximation (MFT) is employed, in which 
eq. (10) is minimized by iteratively solving the MFT equations 

BE(v- -) 1
0.5( 1 + tanh( _ ~1 ) (11)

BVij T 

where "temperature" T and thermal averages Vij (Sij)T have been introduced. The temperature 
represents noise that is introduced to avoid local minima. The advantage of the MFT approach (eq. 
(11)) is that a true stochastic procedure can be emulated by the set of deterministic MFT equations 
(eq. (11)). The system "feels" its way towards good solutions. 

In its original form this approach requires N 2 degrees of freedom for N signals with full potential 
connectivity between the signal points. In reality this is however never the case. In ref. [41] 
realistic cuts on the degrees of freedom were made on an application with real TPC data from the 
CERN ALEPH detector. The performance in terms of quality of the ANN algorithm solutions on 
this problem turned out to be compatible with that of the conventional one used in the ALEPH 
detector. With regard to execution speed the ANN approach is a winner, in particular for high 
multiplicity events [41]. 

Another neural approach is to have a rotor neuron [42] associated with each signal interacting in 
such a way that smooth tracks [43] are promoted. This method requires only O(N) degrees of 
freedom. We will return to this approach below. 
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Even though the neural approach [39, 40, 41] seems to work very well it may not be the optimal 
way to proceed for the particle physics track finding problem for the following reasons: 

1. 	It only solves the combinatorial optimization part of the problem; assigns signals to tracks. 
One still has to make a fit to obtain the momenta. It is desirable to have an algorithm that 
does both these things in one "shot". 

2. 	 The neural approach is more general than what is needed for this problem since the parametric 
form of the tracks are known in advance - straight lines or helices. Any powerful algorithm 
should take advantage of this prior knowledge of the parametric form. This is the way a 
human being would do it. To illustrate this point we show in fig. 5a signal points generated 
from 15 straight tracks with 100% noise. The human method of spotting the tracks in the 
noisy environment is by inspecting the image in fig. 5 by holding it up and look for straight 
lines4 • 

3. 	The number of degrees of freedom needed to solve the a N signal problem is large even with 
the connectivity restrictions imposed in refs. [40, 41]. For a problem with N signals and M 
tracks one should in principle only require O(M) degrees of freedom. 

4. 	 As demonstrated in ref. [44] the neural approach is somewhat sensitive to noise. Again with 
prior knowledge of the parametric form one should be more robust with respect to noise (cf. 
pt. 2 above). 

• • • • •• • • 
•• • ... ­

•• • .. . .­ .. .. .. ..­. - .. • ••• .. .­ _... _...... 
- ... ...... _. 

•••••• .... .. ... ... _........... . .. ­ ...­ ..... .. . ... ... .. ..... . .. . . . ....... -. . ... _. . 
•• • ••• • • 

• •• •••• • • • 
Figure 5: (a) Signal points from 15 generated straight tracks with 100% noise. (b) The corresponding 
solution. From ref. [44]. 

All these issues can be accounted for in a novel approach [45,46, 47] based on so-called deformable 
templates or elastic nets [37]. A very similar approach was independently pursued in ref. [44]. 

encourage the reader to hold up the page to verify this. 
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4.1 The Elastic Arms Approach 

The Strategy 

The strategy is to try to match the observed events to simple parameterized models (templates) 
where the form of the models contains the a priori knowledge about the possible tracks, e.g. circles 
passing through the origin (the collision point). In addition, this formulation allows for some data 
points, those corresponding to noise, to be unmatched. The mechanism involved is closely related 
to redescending M-estimators used in Robust Statistics [48]. 

The algorithm works in two steps. First a Hough transform [11] is used to give initial conditions for 
the templates and to specify the number of templates required. Hough transforms are essentially 
variants of "histogramming" or "binning" techniques which have previously been applied to particle 
tracking. Given a set of M tracks given by the parameters (8a, Kta, "Ya) in the case of helices from 
the Hough transform, the elastic arms method then takes over and resolves ambiguities and makes 
detailed fits to the signals. In ref. [45, 46] the derivation of the elastic arms approach was based on 
minimizing the following energy function. 

i,a a 

(12) 

where: (i) Zi labels the positions of the measurement points (i = 1, .. " N)), (ii) ia the track 
parameters (in the case of helices i a=(8a ,Kta,"Ya)), (ii) M(Zi, ia), which in what follows is abbreviated 
with Mia, is a measure of distance between the itk point and the atk template, and (iii) Sia is a 
binary decision unit (neuron) such that 

Sia = 1 	 (13) 

if the atk arm goes through the itk point and is zero otherwise. E[sia, i a] is minimized with respect 
to Sia and ia subject to the global constraint that each point is either matched to a unique template 
or not matched. More precisely, given i there exist a unique a such that Sia 1. The second term 
in eq. (12) imposes a penalty A if a specific point is unmatched to any circle. In order to avoid local 
minima when minimizing eq. (12) a Boltzmann distribution is introduced for E 

(14) 


with fI=l/T as the inverse temperature (noise level) and Z as the partition function. Integrating 
out the neuronic degrees of freedom (Sia) subject to the constraint of eq. (13), yields a marginal 
distribution 

PM [1fa]] 	 ~e-tlEeJ/[-i'<1] (15)
Z 

where we have introduced the effective energy Eej j as 

(16) 

a 

Gradient descent on eq. (16) gives rise to the updating equations that converges to the tracking 
solutions. Note that both the the combinatorial and fitting parts of the problem (Sia and 1fa 
respectively) are being solved. 
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A Simple Derivation 

The resulting updating equations can also be obtained with an alternative and somewhat more 
intuitive way [47], where one in addition to Sia introduces N zero-neurons SiO (i 1, ... , N), such 
that MiD =Afor all i. The energy function equivalent to eq. (12) which then reads 

N M 

E[Sia;*a] = ~~siaMia, (17) 
i=1 a=O 

should be minimized together with the Potu condition 

M 

~Sia = 1 "Vi (18) 
a=O 

This condition is of course equivalent to eq. (13). Using gradient descent to minimize E with respect 
to *a, gives 

A7r(k) (k) ~ 8Mia 
a -l1a L..t Sia ---v;) (19) 

i 87ra 

Next we replace Sia with its thermal average Via = (Sia)T. The MFT equations for Potts neurons 
[40] analogous to the ones in eq. (11) for Via read 

(20)Via = ""M u. 
L..-b=O e ... 

where the local field Uia is given by 

Substituting this into eq. (20) yields 

(21) 


(22) 


How Does the Algorithm Work? 

How does this algorithm work? At the starting temperature TH a set of template arms are placed 
according to the Hough transform values for the parameters i u' The templates are Gaussian dis­
tributions centered around the arm values where the width is given by the temperature (see fig. 
6). Initially each arm can attract many signals. The relative importance of the different signals 
is measured by the Potts factor (eq. (22». As the temperature is lowered the different arms are 
attracted to nearby signals more intensely. 

The N zero-neurons Voa are introduced because of the presence of noise signals in the data. It is 
therefore natural to interpret '/JiO as the probability for signal i to be a noise signal, and ViO is given 
by 

(23) 
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With this interpretation ViO can be used as a tool to identify non-fitted signals. If ViO ~ 1 after the 
annealing of the algorithm (T -+ 0), then i is a possible noise signal or a signal belonging to a track 
not included in the formalism. It is very instructive to inspect how the different ViO'S develop with 

Figure 6: An elastic arm at temperature T. 

decreasing temperature. If we choose A to be the square of some typical distance representing the 
error in the initialization of the algorithm then, at high temperature, ViO > 0 for most of the signals. 
As the temperature decreases "decisions" are made whether signal i belongs to a track or not. This 
can be seen in fig. 7 where the different ViO'S are plotted against the number of iterations. The ViO'S 

goes to either 0, meaning that signal i is assigned to a track, or 1, corresponding to i being a noise 
signal. Decisions are not made at a common temperature, instead the different ViO'S converge at 
different temperatures (iteration steps). We also see that, already at a high temperature, ViO ~ 1 
for some signals, meaning that there is no initial arm close to these signals - they can form possible 
secondary tracks. 

1 

V io 

0.5 

o 

50 100 150 
Iteration 

Figure 7: Development of the ViO'S for a generated CERN DELPHI TPC event (371 signal points). 
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The elastic arms algorithm is also strongly related to Bayes' theorem as is discussed in ref. [46J. In 
refs. [45, 46J it is also shown how the Hough transform is a f3 1-+ 00 and ,\ 1-+ 0 limit of eq. (12) and 
how this approach is related to that of ref. [44], where also Hough transforms are used specify the 
number of tracks and initial parameters values. 

Implementation Issues 

The solutions are obtained by iteratively solving eqs. (22) by annealing the temperature at each 

step. The optimal updating rates 1'/lk) are of course different for the different parameters. In ref. [47] 
an automated procedure for choosing these were developed, which is based on finding the natural 
metric for the problem. 

The performance of the algorithm has been tested with simulated data from the CERN DELPHI 
TPC detector. A typical result is shown in fig. 8. It is encouraging to see how well the algorithm 
works. The arms do not confuse one another, even when passing close, or crossing each other. This is 
of course due to the Potts factor (eq. (22)), which in a sense "decides" which track each arm should 
be attached to and ignores the others. Not only does the algorithm exhibit good performance, it is 

3-D view 

o 

Figure 8: Result from Hough/Elastic arms algorithm with signals generated by CERN DELPHI 
TPC event generator (308 signal points). 

also very cost effective in every respect. It scales like N x ]l.f and processes a typical DELPHI TPC 
event in one minute ona DEC 3100 workstation. The underlying F77 code only contains 0(300) 
lines. 

Extensions of the Algorithm 

So far all tracks emerging from other points than the assumed vertex position have been considered 
noise. This restriction is often unrealistic. In ref. [47] the formalism was extended to include, (i) 
secondary tracks coming from decaying particles and (ii) multiple vertex positions. In refs. [47, 49] 
it was also demonstrated how to handle the problem of mirror charges in the detectors. 

Secondary tracks and multiple vertex positions are treated by having the vertex flO 
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(:vjf yj f zj) (j = If ... , K) as an additional parameter for the template with associated updating 
procedures. With this extension the algorithm could be used for vertex detection in general. This 
is most relevant at LHC/SSC luminosities, where one expects multiple events per bunch crossing. 

Mirror Charges occur as ambiguities in some detectors where a coordinate for a given signal may 
be double-valued - it has a mirror signal, (:v, y) -+ (:v+ or :v-, y). This ambiguity problem can be 
solved [49] in the same manner as noise signals are handled, but on different levels of resolution. 
This is seen by rewriting the original energy function (eq. (12)) as 

(24) 

w here the new variables st and sia are defined by 

if signal i+ (i-) is assigned to arm a+(_)_{1
si.a sia - 0 (25)

otherwise 

and with the corresponding distance meC!sure Mi.! (Mi.-;')' A derivation analogous to the above then 
gives new updating equations for the associated Potts neurons vt and via. 

In summary this is a track finding method that combines the matching and the fitting problem into 
a single algorithm. It goes from coarse to fine resolution by using a variant Hough transform to 
intitialize a set of elastic arms. The approach is easy to adapt to specific situations. For example, 
suppose measurement precisions vary for different pad-layers. Then the formalism can be generalized 
to allow for different i-dependent ).'s for the different pad-layers. 

Although the core algorithm is extremely robust and generalizable to new situations, the initializa­
tion procedure has to be custom-made for different experimental configurations. 

Particle physics tracking codes always end up "dirty" with ample of exceptions etc. The elastic 
arms approach has the advantage that the code based on it starts out from a clean base with global 
constraints built in. Nevertheless it is flexible to host a variety of experimental setups. The only 
"engineering" needed concerns the initialization. Furthermore the approach has the advantage of 
being intrinsically parallel, facilitating design of custom made hardware for real-time execution. 

4.2 The Rotor Model Approach 

A completely different neuronic approach to track finding is the rotor approach [43J 1 where rotors Si 
are associated with signal points. These rotors interact with each other (within some neighbourhood) 
and with line segment vectors Tt.j (see fig. 9). A suitable energy function for lining up the rotors 
to form tracks is [43] 

(26) 

where the first term aligns neighbouring rotors to each other and the second term aligns rotors 
with neighbouring template segments. The factor 1/ lTt.j ITn suppresses non-local interactions. The 
balance between the two constraints is governed by the Lagrange parameter a. 
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Figure 9: Rotors Si and line segment vectors rij. 

Again the MFT technology can be applied for finding good minima. The MFT equations for this 
system read [42] 

(27) 

where 
aE 1 

(28)
a~T 

and Vi =< Si >T are the correponding mean field variables. 11 and 10 are Bessel functions. Note 
that Vi does not lie on the unit circle for T f:. O. At high temperatures Vi will be in the vicinity of 
the origin. As the temperature is lowered it will "wander" out to the unit circle (see fig. lOa). Its 
final direction defines the solution (this is in sharp contrast to methods based on making small steps 
in Si, in which case one is is confined to moving on the circle). In fig. lOb we sh<?w the behaviour 
of 11/10 (ze). This threshold function is reminiscent of a tanh-function. These MFT rotor neuron 
technique has turned out to be very powerful in another angular optimization problem - placing 
charges on a sphere [42]. 

As it stands eq. (26) assumes no parametric form of the tracks. It has demonstrated in ref. [51J 
that the requirement of circular tracks can be naturally incorporated by replacing eq. (26) by the 
expression 

(29) 

where T;,j=T(¢ij) is the rotation matrix for the angle ¢ij between fij and the z axis emerging 
from signal i. Hence Sf in eq. (29) is the mirror reflection of Sj relative to iij Ref. [51] reports 
on successful use of this energy function together with the MFT equations (27) on a multiwire 
proportional counter tracking problem. 

Figure 10: (a). MFT development of~ from T 00 to T = O. (b). 11/1o(luil) as a function of IUil. 

14 



5 

... 

",. ..... 

Summary 

It is clear that ANN are here to stay, both in general and with respect to high energy physics 
applications. Within 5 years from now one will find ANN in standard software packages, both 
commercial and public domain ones. Also, the special purpose hardware implementations will play 
an important role in intelligent data processing. 

What is really New? 

A question that arises is what ANN really has brought to the table as compared to standard 
approaches. 

• 	 Classifiers. The muli-Iayered percept ron (MPL) is a generic non-linear extension of standard 
discrimination methods and it thus contains the latter as a special case. 

• 	 Function Approximators. Again the inclusion of hidden layer(s) makes the the ANN 
approach a generalization of linear predictors etc.. 

• 	 Self-organization. Self-organizing networks host the conventional k-means clustering algo­
rithm as a special case. In addition these networks also have the capability of grouping similar 
features nearby in a metric space, which facilitates the interpretations. Principal component 
analysis can also be formulated as a self-organizing neural system. 

• 	 Combinatorial Optimization. Whereas in the domains listed above the ANN approach 
are non-linear extensions of existing technologies, the situation is different when finding good 
solutions to optimization problems. These problems are mapped onto energy fuctions very 
similar to those of magnetic systems. Hence tools from statistical mechanics can be exploited. 
In addition to the simulated annealing method one uses the mean field approximation. With 
this technique the systems feel their ways in a "fuzzy" manner towards good solutions. This 
is in contrast to most other methods, where discrete moves take place in solution space. 

High Energy Physics 

The progress of exploiting ANN in high enregy physics has been somewhat slow. Partly this con­
servatism is due to the a misconception that ANN approaches contain an element of "black box 
magic" as compared to conventional approaches. I hope I have convinced the reader that this is not 
the case. Statistical interpretation of the answers makes the ANN approach as well-defined to use 
as the discriminant ones. 

Off-line uses of ANN for classification problems are presently dominated by jet tagging. Very 
successful results exist for gluon and heavy quark identification. The performance seems to be 
better than or equal to that of conventional methods. The public domain F77 software package 
(JETNET 2.0) [52] has been commonly used in many of the applications discussed in this talk. 

Parallel execution with custom made hardware is natural for ANN. Indeed, such real-time devices 
are being installed [24]. 

Novel pplications domains like mass reconstruction and process control look very promising. 
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In the area of track finding variants of ANN, elastic arms (or net) algorithms appears to be very 
powerful given their flexibility and noise resistance. 
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