Input Output Check

Xingyu Zhou

xyzhou@ihep.ac.cn

June 29, 2016

Outline

- 1 method
- 2 Results Γ_{tot}
- **3** Results Γ_{II}
- 4 Results $\Gamma_{ee}/\Gamma_{\mu\mu}$

Method

- Using the Mathematica function MultinormalDistribution, we sample 1000 groups of correlated cross sections
- Each group has 15 cross sections of $e^+e^- \rightarrow e^+e^-$ and 15 cross sections of $e^+e^- \rightarrow \mu^+\mu^-$.
- The mean values used for sampling are evaluated according to the theorectial formulas with $\Gamma_{tot}=92.1 keV$, $\Gamma_{||}=5.51 keV$ (they are the input values of parameters).
- The covariance matrix are just the 30 × 30 covariance matrix of experimental cross sections measurement.
- Check the pull distributions of parameters: Γ_{tot} , Γ_{II} , $\Gamma_{ee}/\Gamma_{\mu\mu}$.
- Now 862 groups have been fitted successfully.

Results $\overline{\Gamma_{tot}}$


```
FCN=79.7413 FROM MIGRAD
                          STATUS=CONVERGED
                                                75 CALLS
                                                                  76 TOTAL
                   EDM=1.93824e-10
                                      STRATEGY= 1
                                                       ERROR MATRIX ACCURATE
                                                             FIRST
EXT PARAMETER
                                                STEP
      NAME
                VALUE
                                 ERROR
                                                           2.23142e-06
    Constant
                 3.46576e+01
                             1.65462e+00
                                             5.49343e-03
    Mean
                 7.90177e-03
                               3.21239e-02
                                             1.40452e-04 -3.43565e-04
    Siama
                 8.82734e-01
                               2.77540e-02
                                             3.05298e-05
                                                          2.10844e-03
```

Results — Γ_{II}


```
FCN=102.925 FROM MIGRAD
                          STATUS=CONVERGED
                                                                   78 TOTAL
                   EDM=2.93828e-12
                                      STRATEGY= 1
                                                       ERROR MATRIX ACCURATE
EXT PARAMETER
                                                             FIRST
      NAME
                VALUE
                                 ERROR
                                                          DERIVATIVE
NO.
    Constant
                 2.77837e+01
                               1.38217e+00
                                             5.10789e-03 -8.00561e-09
                -4.31804e-02
                               3.99025e-02
                                             1.98095e-04 -5.41139e-05
    Mean
    Sigma
                 1.05786e+00
                               3.65630e-02
                                                          1.21861e-04
```

Results — $\Gamma_{ee} / \Gamma_{\mu\mu}$

FCN=8	37.9775 FROM	MIGRAD	STATUS=CONVE	ERGED	68	CALLS	69	TOTAL
		EDM=4.1	.4617e-10	STRATEGY=		ERROR	MATRIX	ACCURATE
EXT	PARAMETER				STI	(P	FIRST	
NO.	NAME	VALUE	ERROI		SI	E DE	RIVATIVE	
	Constant	2.77968e+	-01 1.36446	5e+00 4.	6163	33e-03 1	.70719e-	-05
	Mean	3.29719e-	-02 4.08508	Be-02 1.	8783	lle-04 -2	.43260e-	-05
3	Sigma	1.10906e+	-00 3.83685	e-02 3.	7565	4e-05 3	.50981e-	-03

Thanks for your attention!