## Production of "True Muonium" at Super-Tau-Charm factory

S.J. Brodsky, R.F.Lebed, PRL 102, 213401 (2009) 1209.0060 [hep-ph]

Hai-Bo Li (李海波) IHEP, 2014年2月19日

# Motivation



## Muonic hydrogen Lamb shift

so different from what was expected! New force for muons?



# Motivation

- Any new force exchanges between muon and proton, which is lepton-flavor dependent?
- $(\mu^+\mu^-)[n^3S_1] \rightarrow \gamma^* \rightarrow e+e-$  is allowed and sensitive to the vacuum polarization corrections via the time-like running coupling  $\alpha(q^2>0)$
- It should be related to the g-2 (discrepancy between theoretical prediction and measurement)?
- It should be also correlated with  $\mu \rightarrow e\gamma$  transition?
- Lepton-flavor dependence: study property of (μ<sup>+</sup>μ<sup>-</sup>), which may be different from positronium (e+e-)? IT IS IMPORTANT!

PRL 102, 213401 (2009) 1209.0060 [hep-ph]

## "True Muonium"

- Positronium (e+e-): M. Deutsch, Phys. Rev. 82, 455 (1951):
- Muonium: (μ+e–):, Phys. Rev. Lett. 5, 63 (1960):
- (μπ) atom: Phys. Rev. Lett. 37, 249 (1976);
- No observation of  $(\mu^+\mu^-)$  yet, but it was predicted in 1969.
- Many proposals for the production of the  $(\mu^+\mu^-)$ :

$$\begin{aligned} \pi^{-}p &\to (\mu^{+}\mu^{-})n \quad eZ \to e(\mu^{+}\mu^{-})Z \\ \gamma Z &\to (\mu^{+}\mu^{-})Z \qquad Z_{1}Z_{2} \to Z_{1}Z_{2}(\mu^{+}\mu^{-}) \\ \eta &\to (\mu^{+}\mu^{-})\gamma \qquad e^{+}e^{-} \to (\mu^{+}\mu^{-}) \end{aligned}$$

Hai-Bo Li(IHEP)

 $e^- \rightarrow (\mu^+ \mu^-)$ 

- It is hard to produce "true Muonium" in the e+e- head-to-head collision at threshold of "true muonium"
- The luminosity is low, hence the statistical is low;
- The decay products of "true muonium" is hard since the final states are low momentum.
- Proposal was made to produce the "true muonium " in a machine, in which the ( $\mu^+\mu^-$ ) is strongly boosted, and easy to detect or identify.

PRL 102, 213401 (2009)

The open angle between e+ and e- beams is 2 $\theta$ , CM energy s =  $(p_{e+} + p_{e-})^2 = 2E_+E_-$ (1-cos(2 $\theta$ ))  $\approx 4 \text{ m}\mu^2$ .



θ=5°, E<sub>±</sub>=1.212 GeV, p(mu+mu-) = 2.415 GeV, γ=11.5 2014-2-19 Hai-Bo Li(IHEP)

### Spectroscopy of the "true Muonium"



Bohr binding energy  $-m_{\mu}\alpha^2/4n^2$ 

Hai-Bo Li(IHEP)

## Lifetime and stability of $(\mu^+\mu^-)$ true Muonium

- The free μ is unstable and has lifetime of 2.6 μs, meaning that the (μ<sup>+</sup>μ<sup>-</sup>) (0.62ps [<sup>1</sup>S<sub>0</sub>] and 1.8 ps[<sup>3</sup>S<sub>1</sub>]) annihilates long before its constituents weakly decay;
- The free τ lifetime is 291 fs, the true tauonium is about 38 fs and 107 fs for <sup>0</sup>S<sub>1</sub> and <sup>3</sup>S<sub>1</sub>, respectively, tauonium is not a pure QED states, and hard to produced;
- True Muonium is unique as heaviest metastable state possible for precision QED tests.

#### Production cross-section of "true Muonium" near threshold



The open angle between e+ and e<sup>-</sup> beams is 20, CM energy s =  $(p_{e+} + p_{e-})^2 = 2E_+E_ (1-\cos(2\theta)) \approx 4 \text{ m}\mu^2$ , for example"  $\theta=5^\circ$ ,  $E_{\pm}=1.212\text{GeV}$ ,  $p(\mu^+\mu^-) = 2.415\text{GeV}$ ,  $\gamma=11.5$  Aft

The average decay length in the lab for True Muonnium (TM):  $3^{3}S_{1}(TM) \rightarrow e+e-: 16.6 \text{ cm}$ 

 $2^{3}S_{1}(TM) \rightarrow e+e-: 4.9 \text{ cm}$ 

After considering the Sommerfeld-Schwinger-Sakahorov (SSS) threshold enhance factor from Coulomb rescattering:

$$\sigma = \frac{2\pi\alpha^2\beta}{s} \left(1 - \frac{\beta^2}{3}\right) S(\beta)$$

 $e^{-}$   $S(\beta) = \frac{X(\beta)}{1 - \exp[-X(\beta)]}$   $X(\beta) = \pi \alpha \sqrt{1 - \beta^2} / \beta$ 

 $\beta$  is the velocity of  $\mu^+$  or  $\mu^-$  in their central of mass system,  $\beta \rightarrow 0$  near threshold.

After considering the beam spread of 1 MeV:

$$R = \frac{\sigma(e^+e^- \to (\mu^+\mu^-))}{\sigma(e^+e^- \to \mu^+\mu^-)} = 5 \times 10^{-5}$$

The production cross-section is about 0.1 nb The Luminosity could be  $1 \times 10^{32}$  /cm<sup>2</sup>/s, about  $1 \times 10^{5}$  TM will be produced per year!

#### Production of "true Muonium" at super-tau-charm factory



#### Production of "true Muonium" at super-tau-charm factory

At STCF, it has advantage that the production rate is independent of the beam resolution , and removes the ( $\mu+\mu-$ ) (TM) completely from the beam line since the atom recoils against a coproduced hard  $\gamma$ . While the reproduction of the real  $\gamma$  costs an additional factor of  $\alpha$  in the rate .

#### After considering all bound states and SSS effects:

$$\frac{d\sigma}{ds_1} = 2\pi \left[ \ln \left( \frac{1+c_0}{1-c_0} \right) - c_0 \right] \frac{\alpha^4}{ss_1}.$$

The relevant range of  $ds_1$  is just that where bound Bohr states occur, which begin at energy  $\alpha^2 m_{\mu}/4$  below the pair creation threshold  $s_1 = 4m_{\mu}^2$ , and thus give rise to  $ds_1 \simeq m_{\mu}^2 \alpha^2$ . Thus one obtains

$$\sigma \simeq \frac{\pi}{2} \left[ \ln \left( \frac{1+c_0}{1-c_0} \right) - c_0 \right] \frac{\alpha^6}{s}$$

Hai-Bo Li(IHEP)

#### Production of "true Muonium" at super-tau-charm factory

In e+e- collision at central of mass s (s>>  $4m\mu^2$ ), the ratio is defined as

$$R = \frac{\sigma^{part}(e^+e^- \rightarrow \gamma(\mu^+\mu^-))}{\sigma^{part}(e^+e^- \rightarrow \mu^+\mu^-)} \approx 1 \times 10^{-8}$$

Part: integrate within the detector coverage only, not the whole phase space.

For example, at the BEPCII, assuming  $0.5 \times 10^{33}$  /cm<sup>2</sup>/s at sqrt(s)=2 GeV, In one years data taking, only about 5 true Muonium events are produced. While at super-tau-charm, 500 events will be produced at sqrt(s)=2 GeV. At  $\psi$ (3770) peak, 314 events are expected.

| The average decay length in the lab               | The average decay length in the lab                |
|---------------------------------------------------|----------------------------------------------------|
| E_beam = 1.0 GeV for True Muonnium                | E_beam = 1.89 GeV for True Muonnium                |
| (TM):                                             | (TM):                                              |
| $3^{3}S_{1}(TM) \rightarrow e+e-: 8.3 \text{ cm}$ | $3^{3}S_{1}(TM) \rightarrow e+e-: 16.0 \text{ cm}$ |
| $2^{3}S_{1}(TM) \rightarrow e+e-: 2.5 \text{ cm}$ | $2^{3}S_{1}(TM) \rightarrow e+e-: 4.5 \text{ cm}$  |
| $1^{3}S_{1}(TM) \rightarrow e+e-: 0.3 \text{ cm}$ | $1^{3}S_{1}$ (TM) $\rightarrow$ e+e-: 0.5 cm       |

# Production of "true Muonium" at super-tau-charm factory In J/ $\psi$ decay

Assuming the ratio of BR(J/ $\psi \rightarrow \gamma(\mu^+\mu^-)$  to BR(J/ $\psi \rightarrow \mu^+\mu^-)$  is:

C = + 
$$R = \frac{BR(J/\psi \to \gamma(\mu^+\mu^-))}{BR(J/\psi \to \mu^+\mu^-)} \approx 1 \times 10^{-8}$$

Each year, we have about  $3 \times 10^{12}$  J/ $\psi$  decay events, about 1800 events/year will be expected for spin singlet states  ${}^{0}S_{1}(TM) \rightarrow \gamma\gamma$ ,

Signal: J/
$$\psi \rightarrow \gamma(\mu^+\mu^-)$$
,  $(\mu^+\mu^-) \rightarrow \gamma\gamma$ 

Backgrounds:  $J/\psi \rightarrow \gamma \pi^0, \pi^0 \rightarrow \gamma \gamma$ 



# Summary

- It is possible to search for the true Muonium at Super-tau-charm factory
- The spin-triplet states can be reached in e+e-  $\rightarrow \gamma(\mu\mu)$
- The spin-singlet states can be reached in the  $J/\psi \rightarrow \gamma(\mu\mu)$
- The lifetime of true Muonium may be measured
- A fast MC simulation is needed.

## Decay time and their ratios for true Muonium decays.

$$\begin{aligned} \tau(n^{3}S_{1} \to e^{+}e^{-}) &= \frac{6\hbar n^{3}}{\alpha^{5}mc^{2}}, \qquad \tau(n^{1}S_{0} \to \gamma\gamma) = \frac{2\hbar n^{3}}{\alpha^{5}mc^{2}}, \\ \tau(2P \to 1S) &= (\frac{3}{2})^{8} \frac{2\hbar}{\alpha^{5}mc^{2}}, \qquad \tau(3S \to 2P) = (\frac{5}{2})^{9} \frac{4\hbar}{3\alpha^{5}mc^{2}}, \\ \frac{\tau(n^{3}S_{1} \to e^{+}e^{-})}{\tau(n^{1}S_{0} \to \gamma\gamma)} &= 3, \qquad \frac{\tau(2P \to 1S)}{\tau(n^{1}S_{0} \to \gamma\gamma)} = (\frac{3}{2})^{8} \frac{1}{n^{3}} = \frac{25.6}{n^{3}}, \\ \frac{\tau(3S \to 2P)}{\tau(2P \to 1S)} = (\frac{5}{3})^{9} = 99.2. \end{aligned}$$